

ENVIRONMENTAL - REMEDIATION - GEOTECHNICAL ENGINEERING - WORK HEALTH & SAFETY - LABORATORIES - DRILLING

DETAILED SITE INVESTIGATION

5-9 Croydon Street, Lakemba Suburb NSW

Prepared for

Eloura Holdings Pty Ltd

25th November 2024

Aargus Pty Ltd: ACN 050 212 710 HEAD OFFICE: 6 Carter Street, Lidcombe NSW 2141 - PO Box 398 Drummoyne NSW 2047 Tel: 1300 137 038 - Fax: 1300 136 038 - Email: admin@aargus.net - Website: www.aargus.net

CONTROLLED DOCUMENT DISTRIBUTION AND REVISION REGISTER

DISTRIBUTION LIST

Copy No.	Custodian	Location	
1	Nick Kariotoglou	Aargus Pty Ltd (Library)	
2	Alex Harb	Eloura Holdings Pty Ltd	

Note: This distribution list identifies the current custodians of controlled copies of the subject document. It is expected that these custodians would be responsible for:

- the storage of the document
- ensuring prompt incorporation of amendments
- making the document available to pertinent personnel within the organization
- encouraging observance of the document by such personnel
- making the document available for audit

DOCUMENT HISTORY

Document No.	Revision No.	Issue Date	Description
ES8320	0	26.08.2021	Initial Issue
ES8320	1	25.11.2024	New Plans

Approved for release by:

Mark Ketty

Mark Kelly Environmental Manager

Date:

25th November 2024

TABLE OF CONTENTS

TABLE	E OF CONTENTS	3
LIST O	DF TABLES	6
LIST O	OF FIGURES	7
LIST O	OF APPENDICES	8
ABBRI	EVIATIONS	9
EXECU	JTIVE SUMMARY	10
1 IN	ITRODUCTION	12
1.1	BACKGROUND	12
1.2	OBJECTIVE	12
1.3	SCOPE OF WORKS	13
2 SI	TE IDENTIFICATION AND DESCRIPTION	14
2.1	SITE IDENTIFICATION	14
2.2	SITE INSPECTION	15
2.3	TOPOGRAPHY AND SURFACE WATER DRAINAGE	16
2.4	SURROUNDING LAND USES	16
3 SI	TE HISTORY	17
3.1	LAND TITLES	17
3.2	AERIAL PHOTOGRAPHS	18
3.3	EPA RECORDS	18
3.3.1	CLM Act 1997	18
3.3.2	POEO Register	19
3.4	INDUSTRIAL PROCESSES AND PRODUCTS MANUFACTURED	19
3.5	FORMER CHEMICAL STORAGE AND TRANSFER AREAS	19
3.6	PRODUCT SPILL & LOSS HISTORY	19
3.7	DISCHARGES TO LAND, WATER AND AIR	19
4 El	NVIRONMENTAL SETTING	20
4.1	SENSITIVE ENVIRONMENTAL RECEPTORS	20
4.2	GEOLOGY	20
4.3	ACID SULFATE SOILS	20
4.4	HYDROGEOLOGY	20
5 SI	UMMARY OF PREVIOUS REPORTS	22
6 A	REAS OF POTENTIAL ENVIRONMENTAL CONCERN	24
7 D.	ATA QUALITY OBJECTIVES	25
7.1	STEP 1 – STATE THE PROBLEM	25
7.1.1	Problem Statement	25
7.1.2	Objectives	25
7.1.3	Project Team	26
7.2	STEP 2 - IDENTIFY THE DECISIONS OF THE STUDY	26
7.3	STEP 3 - IDENTIFY INFORMATION INPUTS	27
7.4	STEP 4 – DEFINE THE STUDY BOUNDARIES	27
7.5	STEP 5 – DEVELOP THE ANALYTICAL APPROACH	27

7.6	STEP 6 - SPECIFY LIMITS ON DECISION ERRORS	
7.7	STEP 7 - OPTIMISE THE DESIGN FOR OBTAINING DATA	
8 D	DATA QUALITY INDICATORS	
8.1	GENERAL	
8.2	COMPLETENESS	
8.3	COMPARABILITY	
8.4	REPRESENTATIVENESS	
8.5	PRECISION	
0.6	ACCURACY	
0.1	CENED AL	
9.1	SOILS INVESTIGATION AND SCREENING LEVELS	
921	Health Investigation Levels (HILs)	35
022	Health Screening Levels (HSLs)	36
023	Ecological Investigation Levels (FIL s)	36
0.2.4	Ecological Investigation Levels (EILs)	
9.2.4	Detroloum Hydrogerbon Management Limits	
9.2.5	Ashestes	
9.2.0	Aspestos	
9.3	EXPORT OF WASTE	
10 5		
10.1	I GENERAL METHODOLOGY	
10.2	2 SAMPLING DESIGN KATIONALE	
10.	4 SAMPLING METHODOLOGY	
10.4	5 FIELD TESTS	
10.6	6 SOIL LABORATORY ANALYSIS	
11 Q	UALITY ASSURANCE / QUALITY CONTROL	
11.1	1 FIELD 0A/0C	
11.1.1	General	
11.1.2	Field Duplicates	
11.1.3	Rinsates	
11.1.4	Trip Blanks / Spikes	
11.1.5	Sample Handling, Storage and Transport	
11.1.6	Decontamination Procedures	
11.1.7	Calibration of Equipment	
11.2	2 LABORATORY OA/OC	
11.2.1	Laboratories Used	
11.2.2	Holding Times	
11.2.3	Test Methods and Practical Quantitation Limits	
11.3	3 QA/QC DATA EVALUATION	
12 F	IELD OBSERVATIONS	
12.1	1 GEOLOGY	
12.2	2 FIELD HEADSPACE RESULTS	

13 LABO	RATORY RESULTS	. 49
13.1 GE	NERAL	. 49
13.2 SO	IL RESULTS	. 49
13.2.1	Heavy Metals	49
13.2.2	TRH, BTEX, NAPHTHALENE &/OR BENZO(a)PYRENE	50
13.2.3	PAH, OCP, PCB	51
13.2.4	Asbestos	51
14 CONC	LUSION AND RECOMMENDATIONS	. 52
LIMITATIC)NS	. 53
REFERENC	ES	. 55
KLI LIKLIK		. 55

LIST OF TABLES

Table 1: Site Identification	14
Table 2: Surrounding Land Uses	16
Table 3: Land Title Information	17
Table 4: Summary of Potential Areas and Contaminants of Concern	24
Table 5: Project Team and Responsibilities	26
Table 6: Acceptable Limits for QC Samples	28
Table 7: Data Completeness	31
Table 8: QA/QC Requirements	32
Table 9: Data Comparability	32
Table 10: Data Representativeness	33
Table 11: Data Precision	34
Table 12: Data Accuracy	34
Table 13 Health screening levels for asbestos contamination in soil	
Table 14: QA/QC Sampling Frequency	43
Table 15: Soil Field Duplicate Samples	43
Table 16: Rinsate Samples	43
Table 17: Trip Blank/Trip Spikes	44
Table 18: Summary of Geological Observations	48

LIST OF FIGURES

Figure 1:	Site Locality
Figure 2:	Site Lot and DP Numbers
Figure 3:	Original Borehole Locations on Survey Plan
Figure 4:	Borehole Locations on Aerial View
Figure 5:	Borehole Locations on Proposed Development Layout

LIST OF APPENDICES

- APPENDIX A: SITE PLANS
- APPENDIX B: PROPOSED DEVELOPMENT PLANS
- APPENDIX C: SITE PHOTOGRAPHS
- APPENDIX D: CURRENT LAND TITLE INFORMATION
- APPENDIX E: NSW EPA RECORDS
- APPENDIX F: REGULATORY CRITERIA
- APPENDIX G: FIELD RECORD FORMS / CALIBRATION CERTIFICATES
- APPENDIX H: LABORATORY TECHNICAL INFORMATION
- APPENDIX I: LABORATORY CERTIFICATES
- APPENDIX J: SUMMARY OF RESULTS
- APPENDIX K: PREVIOUS REPORT
- APPENDIX L: IMPORTANT INFORMATION ABOUT YOUR REPORT

ABBREVIATIONS

ADWG	Australian Drinking Water Guidelines
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	Aboveground Storage Tank
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethyl benzene and Xylene
COC	Contaminants of Concern
DLWC	Department of Land & Water Conservation
DNR	Department of Natural Resources
DQOs	Data Quality Objectives
POEO	Protection of the Environment Operations
DSI	Detailed Site Investigation
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
HIL	Health-Based Soil Investigation Level
LGA	Local Government Area
NEHF	National Environmental Health Forum
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NHMRC	National Health and Medical Research Council
OCP	Organochlorine Pesticides
OPP	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PID	Photo Ionisation Detector
PQL	Practical Quantitation Limit
PSH	Phase Separated Hydrocarbon
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance / Quality Control
RAC	Remediation Acceptance Criteria
RAP	Site Remediation Plan
RPD	Relative Percentage Difference
SAC	Site Assessment Criteria
SCID	Stored Chemical Information Database
SEPP	State Environment Planning Policy
SMP	Site Management Plan
SVC	Site Validation Criteria
TCLP	Toxicity Characteristics Leaching Procedure
TPH	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit
UST	Underground Storage Tank
VOC	Volatile Organic Compounds
VHC	Volatile Halogenated Compounds

EXECUTIVE SUMMARY

Aargus Pty Ltd ('Aargus') was appointed by Eloura Holdings Pty Ltd (the 'client') to undertake a Detailed Site Investigation ('DSI') within the property located at 5-9 Croydon Street, Lakemba NSW (the 'site'). It is understood that the site is proposed for the redevelopment into three medium-density residential buildings including two levels of basement car parking and deep soil landscaping areas.

A site investigation was requested by Canterbury-Bankstown Council to determine the potential for onsite contamination as part of the Development Application (DA).

At the time of the inspection (Thursday 12th August 2021) the site was completely vacant with all previous buildings and hard standing surfaces having been removed.

The current land title information provided suggested that:

- 9 Croydon Street, Lakemba NSW was owned by The Presbyterian Church (NSW) Property Trust from 1962 to 2003, after which several private individuals and companies shared the ownership until 2008 when the site was purchased by ACN 155 450 865 Pty Ltd.
- 5-7 & 7A Croydon Street, Lakemba NSW was owned by The Presbyterian Church (NSW) Property Trust from 1962 to 2008 when the site was purchased by Samstone Pty Ltd and Sam Harb Pty Ltd.

The aerial photographs reveal that the site has been residential since the 1930's until 2010 when all features were demolished, whilst the surrounding properties have been predominantly residential and commercial since the 1970's.

The desktop study identified some areas of potential environmental concern, in relation to imported fill of unknown origin, pesticide use, leaks of motor vehicles, metal degradation, and potential presence of hazardous materials in past building structures, which may pose risks to human and environmental receptors.

The soil assessment revealed the following:

- Heavy metals concentrations were below the HIL 'B', EILs and site derived EILs.
- TPH and BTEXN concentrations were below the HSL 'A&B' and Management Limits.
- PAH, OC and PCB concentrations were below the HIL 'B'.
- Asbestos not below the site assessment criteria.

With reference to Clause 4.6 of the State Environmental Planning Policy (Resilience and Hazards) 2021, the site is considered to be suitable for the proposed use of the site for three medium-density residential buildings including basement car parking and deep soil landscaping areas.

Any soils requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

1 INTRODUCTION

1.1 Background

Aargus Pty Ltd ('Aargus') was appointed by Eloura Holdings Pty Ltd (the 'client') to undertake a Detailed Site Investigation ('DSI') within the property located at 5-9 Croydon Street, Lakemba NSW (the 'site'). The location of the property is presented in Figure 1 of Appendix A.

It is understood that the site is proposed for the redevelopment into three medium-density residential buildings including basement car parking and deep soil landscaping areas. The proposed development plans can be found in Appendix B.

A site investigation was requested by Canterbury-Bankstown Council to determine the potential for onsite contamination as part of the Development Application (DA).

1.2 Objective

The primary objectives of this DSI are as follows:

- Identify potential areas where contamination may have occurred from current and historical activities;
- Identify potential contaminants associated with potentially contaminating activities;
- Assess the potential for soils to have been impacted by current and historical activities; and
- Assess the suitability of the site for redevelopment into three medium-density residential buildings including basement car parking and deep soil landscaping areas based on its current condition and the findings of this investigation.

1.3 Scope of Works

The scope of works for this DSI includes:

- Review of the physical site setting and site conditions based on a site inspection, including research of the location of sewers, drains, holding tanks and pits, spills, patches of discoloured vegetation, etc. (where applicable);
- Research and review of the information available, including previous environmental investigations, current and historical titles information, review of aerial photographs, groundwater bore searches, EPA notices, and site records on waste management practices;
- Development of a preliminary Conceptual Site Model (CSM) to demonstrate the interactions between potential sources of contamination, exposure pathways and human/ecological receptors identified;
- A targeted soil boring/sampling investigative study formulating and conducting a sampling plan and borehole investigation;
- Laboratory analysis and results from sample analysis findings and comparison to regulatory guidelines;
- Field and laboratory Quality Assurance/Quality Control (QA/QC); and
- Recommendations for additional investigations should any data gaps be identified or possible strategies for the management of the site, where relevant.

This report was prepared with reference to the NSW Environment Protection Authority (EPA) "Guidelines for Consultants Reporting on Contaminated Sites" (2020).

2 SITE IDENTIFICATION AND DESCRIPTION

2.1 Site Identification

Site identification information and land use is summarised in the table below.

	Lot A in DP357959 (7 & 7A Croydon Street, Lakemba NSW)
	Lot B in DP357959 (5-7 Croydon Street, Lakemba NSW)
	Lot B in DP365853 (5-7 Croydon Street, Lakemba NSW)
Lot and Dr Number (Audress)	Lot 1 in DP974686 (5-7 Croydon Street, Lakemba NSW)
	Lot 2 in DP971844 (5-7 Croydon Street, Lakemba NSW)
	Lot A1 in DP372287 (9 Croydon Street, Lakemba NSW)
Coordinates (NE corner) *	Latitude: -33.919043, Longitude: 151.074957
Approx. Site Area	6,200m ²
Local Government Area	Canterbury-Bankstown
Parish	St George
County	Cumberland
Current Land Zoning**	R4 – High Density Residential
Proposed Land Use	Medium Density Residential
Current Site Owner	Samstone Pty Limited & Sam Harb Pty Limited
Current site Owner	ACN 155 450 865 Pty Ltd
Site End Users	Residents (adults & children), visitors, workers

Table 1: Site Identification

Notes: * refer to http://maps.six.nsw.gov.au/

** refer to https://www.planningportal.nsw.gov.au/spatialviewer/#/find-a-property/address

The site boundary and Lot and DP numbers are presented in Figure 2 of Appendix A.

2.2 Site Inspection

A site visit was carried out on the 23rd November 2010 by an Aargus field scientist with the following observations made:

- The site comprised of brick residential buildings with open grassed areas between the buildings.
- There were no signs of soil staining, plant distress, or any other indicators of potential contamination.
- There were no olfactory indicators of potential contamination.
- No chemical storage was noted within the site.
- There were no visual indicators of underground storage tanks (past or present).

The original site features are presented in Figure 3 of Appendix A.

A site visit was carried out on Thursday 12th August 2021 by an Aargus field scientist to inspect the site with the following observations made:

- The site was completely vacant with all previous buildings and hard standing surfaces having been removed.
- The site was predominantly grass covered.
- The main access to the site was from Croydon Street on the eastern boundary and Railway Parade on the southern boundary.
- A former septic tank was located in the north western corner of the site.
- The site boundaries were defined by metal fences along the western and southern boundaries, and a wooden fence on the northern and eastern boundaries.
- No surface standing water was noticed at the site.

Site photographs are included in Appendix C.

2.3 Topography and Surface Water Drainage

The following observations were made during the site inspection carried out on the 12th August 2021:

- The site topography is generally flat with a slight slope to the west.
- Croydon Street on the eastern boundary slopes slightly towards the north west.
- Railway Parade on the southern boundary slopes slightly to the west.
- Stormwater runoff from the site is expected to flow in a north westerly direction along Croydon Street and in a westerly direction along Railway Parade.

2.4 Surrounding Land Uses

The surrounding land uses identified are described in the table below:

Table 2: Surrounding Land Uses

Orientation	Description
North	Community Clubs and commercial
East	Croydon Street then residential
South	Residential and Railway Parade then Lakemba Station
West	Residential

3 SITE HISTORY

3.1 Land Titles

A review of historical documents held at the NSW Department of Lands offices was undertaken to identify the current and previous land owners and potential land uses. The results of the current title search are summarised in the following tables with the original Title search found in Appendix K – Previous Reports.

Year	Lot A in DP357959 (7 & 7A Croydon Street, Lakemba NSW)
2008-Current	Samstone Pty Limited & Sam Harb Pty Limited
1962-2008	The Presbyterian Church Property Trust
Year	Lot B in DP357959 (5-7 Croydon Street, Lakemba NSW)
	Lot B in DP365853 (5-7 Croydon Street, Lakemba NSW)
	Lot 1 in DP974686 (5-7 Croydon Street, Lakemba NSW)
	Lot 2 in DP971844 (5-7 Croydon Street, Lakemba NSW)
2008-Current	Samstone Pty Limited & Sam Harb Pty Limited
	Prior title: Vol. 8327 Fol. 250
	The Presbyterian Church Property Trust
1962-2008	

Table 3: Land Title Information

In summary, the land title information provided suggested that 5-7 & 7A Croydon Street, Lakemba NSW was owned by The Presbyterian Church (NSW) Property Trust from 1962 to 2008 when the site was purchased by Samstone Pty Ltd and Sam Harb Pty Ltd.

Year	Lot A1 in DP372287 (9 Croydon Street, Lakemba NSW)
2015-Current	ACN 155 450 865 Pty Ltd
2010-2015	Alex Harb
2005-2010	Abdur Rahman & Halena Begum
2003-2005	Knapton & Co Pty Limited
1962-2003	The Presbyterian Church Property Trust

In summary, the current land title information provided suggested that 9 Croydon Street, Lakemba NSW was owned by The Presbyterian Church (NSW) Property Trust from 1962 to 2003, after which several private individuals and companies shared the ownership until 2008 when the site was purchased by ACN 155 450 865 Pty Ltd.

A copy of the current land titles information obtained by Aargus can be found in Appendix D, with the original Titles in Appendix K – Previous Reports.

3.2 Aerial Photographs

Selected aerial photographs obtained from the NSW Department of Lands were reviewed during the original environmental site investigation to describe the site features and surrounding areas at various timelines. A copy of the aerial photography table can be found in Appendix K – Previous Reports.

In summary, the aerial photographs reveal that the site has been residential since the 1930's until 2010 when all features were demolished, whilst the surrounding properties have been predominantly residential and commercial since the 1970's.

3.3 EPA Records

3.3.1 CLM Act 1997

The NSW EPA publishes records of contaminated sites under Section 58 of the Contaminated Land Management (CLM) Act 1997. The notices relate to investigation and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act. However, it should be noted that the EPA record of Notices for Contaminated Land does not provide a record of all contaminated land in NSW.

A search of the database revealed that the subject site is not listed nor are there any listed sites within the suburb of Lakemba.

Copies of the EPA records are included in Appendix E.

3.3.2 POEO Register

A search of the POEO Register revealed that the site was not listed. A copy of the POEO register search is included in Appendix E.

3.4 Industrial Processes and Products Manufactured

A review of the industrial processes and/or products manufactured at the site was conducted, with no such activities noted to have occurred on the site.

3.5 Former Chemical Storage and Transfer Areas

A review of the former chemical storage and transfer areas and/or products manufactured at the site was conducted, with no such activities likely have occurred on the site.

3.6 Product Spill & Loss History

It was indicated by the client, that to their knowledge no serious land or water contamination had occurred.

3.7 Discharges to Land, Water and Air

No discharge to the land, water and air were observed.

4 ENVIRONMENTAL SETTING

4.1 Sensitive Environmental Receptors

The nearest surface water body is Cook River approximately 3.5km to the north east.

4.2 Geology

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983), published by the Department of Mineral Resources indicates the residual soils within the site to be underlain by Triassic Age Shale of the Wianamatta Group, comprising black to dark grey shale and laminite.

JK Geotechnics Pty Ltd prepared a "*Geotechnical Report*" (Ref: 24633Lrpt-rev 1, dated 1st June 2021), with the geology beneath the site comprising of residual Silty Clays underlain by Shale bedrock.

4.3 Acid Sulfate Soils

The NSW Government ePlanning Spatial Viewer indicated that the site is not in an area where the occurrence of acid sulphates is likely (https://www.planningportal.nsw.gov.au/spatialviewer/#/find-a-property/address).

4.4 Hydrogeology

The nearest surface water body is Cook River approximately 3.5km to the north east.

Based on a search of the NSW Natural Resource Atlas website database, the closest bore was located within a 1km west of the site. A search of the Department of Natural Resources (DNR) borehole database information identified approximately three (3) registered groundwater bores within a 1km radius of the site.

The groundwater bore GW105393 is approximately 1km directly west of the site and is mainly used for domestic purposes with each a recorded depth of 5.5m and no recorded standing water level. The groundwater bore GW107854 is approximately 2km due west of the site and is mainly used for domestic purposes, has a recorded depth of 234.50m and a recorded standing water level of 36m. The groundwater bore GW109515 is approximately 2km due east of the site, is mainly used for monitoring purposes with a recorded depth of 6.5m and no recorded standing water level.

JK Geotechnics Pty Ltd prepared a "*Geotechnical Report*" (Ref: 24633Lrpt-rev 1, dated 1st June 2021), indicated that seepage was encountered at 4.2m BGL during drilling at BH1. Groundwater monitoring wells were installed across the site with the standing water level recorded between 0.8m and 4.2m BGL.

5 SUMMARY OF PREVIOUS REPORTS

Aargus undertook a *Preliminary Environmental Site Assessment* within the site in December 2010 (Ref: ES3897, dated December 2010), with a summary of the report provided below:

The report requested by the current developer of the site, on behalf of the site owner, to determine the potential for on site contamination arising from any areas of concern located within the site and its surrounding area. The report shall provide a preliminary assessment of any site contamination and, if required, provide a basis for a more detailed investigation.

A number of potential areas of environmental concerns were identified at the site, particularly:

- Where pesticides were potentially utilised within the site;
- Imported fill materials;
- Carpark areas / driveways where leaks and spills from cars may have occurred; and
- Asbestos / Fibro features.

All concerns are considered of minimal (low) environmental concern for the following reasons:

- Pesticides are not persistent in the environment and the occurrence of pesticides within the school is considered low.
- Imported fill materials appeared to be minimal within the site and below the site assessment criteria.
- Car parking was on the concrete and grass surfaces, which were all in good condition. Furthermore, no contamination was identified beneath these surfaces.
- Asbestos / Fibro would be in a bonded form within the features and, if present, to be removed by a qualified asbestos contractor during demolition. Asbestos in a bonded form is considered non-friable and as such the building materials are considered safe.

Laboratory results for the soil samples analysed were all lower than the relevant regulatory guideline criteria adopted for this development (HIL 'F' and NSW EPA Service Station).

In Summary

Based on the results of this investigation is considered that the risks to human health and the environment associated with soil contamination at the site are low in the context of the proposed use of the site. The site is therefore considered *to be suitable* for the proposed residential development.

Should the site be rezoned for any other type of land use, the following is recommended:

A Hazardous Materials Assessment (HAZMAT) is carried out prior to redevelopment of the site.

Any soils proposed for removal from the site should initially be classified in accordance with the "*Waste Classification Guidelines, Part 1: Classifying Waste*" NSW DECC (2009).

A copy of the full report can be found in Appendix K – Previous Reports.

6 AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

Based on the site inspection, site history, previous reports and review of available information from the desktop study, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Concern (CoC) for the site were identified. These are summarised in the following table.

Potential AFC	Potentially contaminating	Potential	Likelihood of Site	Justification
ni c	activity	0005	Impact	
Entire site	Importation of fill	Metals, TPH,	Low	Based on the site observations, the
	unknown origin	DIEA, PAH,		Investigation and site tonography
	ulikilowil oligili	OCP, PCB,		imported fill meterial is present across
		Aspesios		the site.
	Potential for pesticides	OCP	Low	The site is not known for having been
	to have been sprayed			used for agricultural purposes from the
	or injected on or			1950s when OCPs were first
	underneath concrete			introduced into Australia. If use of
	slabs			OCPs has occurred, the impact is
				likely to have been localised and
				limited to the near surface layer.
Car parking	Leaks from vehicles	Metals, TPH,	Low	The former car park was concrete
		BTEX, PAH		sealed, whilst the site is currently
				unsealed however the site has
				remained closed to the public.
Former	Metal degradation	Asbestos	Low	The impact is likely to have been
metal				localised and limited to the near
features				surface layer.
Former	Potential	Asbestos	Low	All features have been demolished and
Building	Asbestos/Fibro			removed from the site, however,
Structures	Features			demolition was likely undertaken by
				licensed contractors.

Table 4: Summary of Potential Areas and Contaminants of Concern

7 DATA QUALITY OBJECTIVES

7.1 Step 1 – State the Problem

7.1.1 Problem Statement

The site is proposed to be developed into three medium-density residential buildings including basement car parking and deep soil landscaping areas. As part of the DA application, it is a Council requirement that a site investigation report be prepared by a consultant to assess whether the site is suitable for the proposed development.

However, the desktop study identified some areas of potential environmental concern, in relation to imported fill of unknown origin, pesticide use, leaks of motor vehicles, metal degradation, and potential presence of hazardous materials in past building structures, which may pose risks to human and environmental receptors.

7.1.2 Objectives

The objectives of the DSI are:

- To assess the potential for the soils to have been impacted by current and historically contaminating activities.
- To assess the suitability of the site for redevelopment three medium-density residential buildings including basement car parking and deep soil landscaping areas as part of Council's requirements for the DA.

7.1.3 Project Team

The nominated core project team and their responsibilities are listed in the table below.

Table 5: Pro	ject Team and	Responsibilities

Project Team Member	Responsibilities
Mark Kelly – Principal Environmental Consultant	Project Director and Technical Review
Saad Bin Suleman – Environmental Engineer	Field Representative and Report Author

7.2 Step 2 - Identify the Decisions of the Study

The decisions required to address the contamination problem are as follows:

- Is soil contamination present within the areas of potential environmental concern identified?
- Is soil contamination likely to present an unacceptable risk of harm to humans or the environments?
- Is the site currently suitable for the proposed land use being residential with minimal access to soil?
- Is there a potential for onsite/offsite migration issues?
- If not, does the site require further investigation and/or remediation works?

7.3 Step 3 - Identify Information Inputs

The following information is required for input into the decisions identified in Step 2:

- Findings from previous contaminated land reports prepared for the site as summarised in Section 5 of this report;
- Identification of potential areas and contaminants of concern as detailed in Section 6 of this report;
- Selection of soil assessment criteria from appropriate guidelines as detailed in Section
 9 of this report;
- Collection of soil samples from site;
- Headspace analysis for screening of VOCs present within soils using a PID; and
- Comparison and interpretation of results again the adopted soil assessment criteria.

7.4 Step 4 – Define the Study Boundaries

The spatial and temporal aspects of the investigation area that the data must represent to support the decisions identified in Step 2 are as follows:

- The lateral extent of the study boundary is defined by the site boundaries as shown in the Site Location Plans (refer to Figure 1).
- The vertical extent of the study boundary is defined by the depth of the natural soils in borehole S10 located at approximately 0.5 metres below the ground surface.

7.5 Step 5 – Develop the Analytical Approach

The acceptable limits for laboratory QA/QC parameters are shown in the table below and are based upon the laboratory reported acceptable limits and those stated within the NEPM 2013 Guidelines.

Type of QC Sample	Control Limit				
FIELD					
Rinsate Blanks	Analytes <lor< td=""></lor<>				
Intra-Laboratory Duplicates	RPD's <50%				
Inter-Laboratory Duplicates	RPD's <50%				
Trip Blanks	Volatiles <lor< td=""></lor<>				
Trip Spike Recovery	>70%				
LABORATORY					
Method Blanks	< Laboratory LOR				
Matrix Spike	Recovery targets: Metals: 70% to 130% Organics: 60% to 140%				
Laboratory Duplicate	RPD's <30%				
Laboratory Control Samples	Recovery targets: 60% to 140%				
Surrogate Spike	Recovery targets: 60% to 140%				

Table 6: Acceptable Limits for QC Samples

The following conditions should be adopted:

- If the control limits are exceeded, then an assessment of the significance of the results should be carried out;
- If the results of the DQI assessment indicate that the data set is reliable, then the data set will be deemed to be acceptable for the purposes of the investigation; and
- If the measured concentrations of soil and groundwater samples analysed meet their respective validation criteria, then no additional assessment is required is required.

7.6 Step 6 - Specify Limits on Decision Errors

There are two types of decision errors:

- **Sampling errors**, which occur when the samples collected are not representative of the conditions within the investigation area; and
- **Measurement errors**, which occur during sample collection, handling, preparation, analysis and data reduction.

Page 28 of 55

These errors may lead to following (null hypothesis):

- Deciding that the site is not suitable for the proposed development when it actually is (Type I error).
- Deciding that the site is suitable for the proposed development when it is actually not (Type II error).

A 5% significance level has been selected for Type I errors on the basis that 95% of the data set will satisfy the DQIs. Therefore, the acceptable limit of the decision errors is based on a 5% probability of the hypothesis being incorrect.

An assessment will be made as to the likelihood of a decision error being made based on:

- The acceptable limits for inter/intra laboratory duplicate sample comparisons as specified in Step 5 of the DQOs; and
- The acceptable limits for laboratory QA/QC parameters are based upon the laboratory reported acceptable limits and those stated within the NEPM Guidelines.

If the concentration of a particular contaminant of concern exceeds its assessment criteria, then a further assessment is required to address the significance of the result. Statistical analysis based on 95% UCL may be used to assess the significance of the data provided the following conditions are met:

- the arithmetic mean of the data set must be less than its respective threshold level; that is, it is acceptable for individual results to exceed its respective threshold level, but the cumulative mean of the data set of soil sample results must not exceed the threshold level;
- the standard deviation of the data set is less than 50% of the relevant threshold level; and
- no individual sample result should be greater than 250% of the relevant threshold level.

Ecological data is not included in this assessment process as ecological results cannot be statistically interpreted.

7.7 Step 7 - Optimise the Design for Obtaining Data

The optimum design for obtaining data in order to achieve the Data Quality Objectives is as follows:

- Only NATA-accredited environmental testing laboratories will be commissioned to analyse soil samples and will implement a quality control plan conforming to the NEPM (Assessment of Site Contamination) Measure Schedule B(3) Guidelines for Analysis of Potentially Contaminated Soils
- Review of previous contaminated land reports relevant to the Site and the surrounding area;
- An assessment of the Data Quality Indicators to determine if the field procedures and laboratory analytical results are reliable;
- The investigation will be carried out by an experienced and qualified Environmental Scientist, who is trained in sampling at contaminated sites in accordance with Aargus protocols based on best practice industry standards;
- Collection of QA/QC samples at frequencies prescribed in the NEPM Guidelines; and
- In accordance with the NSW EPA "Sampling Design Guidelines" (September 1995) a minimum of sixteen (16) sampling points for a site area of 6,200m² will be adopted to provide general site coverage.

8 DATA QUALITY INDICATORS

8.1 General

The five Data Quality Indicators (DQIs) comprising completeness; comparability; representativeness; precision and accuracy provide an assessment of the reliability of field procedures and laboratory analytical results in accordance with the NEPM 2013 Schedule B2 Guidelines on Site Characterisation, Appendix C – Assessment of data quality. These are addressed in the following sub-sections.

8.2 Completeness

Data Completeness is a measure of the amount of useable data (expressed as %) from a data collection activity. The completeness is equal to the percentage of valid quality assurance and quality control results.

The assessment should address the following:

Field		Laboratory
•	All critical locations are sampled; All samples collected from critical grids and depths; Consistency in the use of standard operating	 All critical samples and analytes are analysed in accordance with the DQOs; Appropriateness of laboratory methods and POLs.
•	procedures, equipment, sampler; Completion and correctness of field documentation.	

Table 7: Data Completeness

The minimum target frequency for each type of QA/QC sample should be carried out in accordance with the following table:

Field QA/QC Sample	Frequency (Soil)
Intra-Laboratory Duplicate	1 in 20 samples
Inter-Laboratory Duplicate	1 in 20 samples
Field Blanks	1 per day (rinsate)
Trip Blank	1 per sample batch
Trip Spike	1 per sample batch

Table 8: QA/QC Requirements

Where any of the above objectives are not achieved for particular samples, steps will be taken to rectify the non-conformance, if possible. Alternatively, data qualifiers detailing the nature of the quality problem will be documented in the report and attached to relevant data in the result summary tables.

The target for overall completeness for each data set is a minimum of 95%. A data completeness of less than 95% may be accepted where it can be justified that the non-conformance does not have a significant effect on the outcome of the results.

8.3 Comparability

Data Comparability is the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.

The qualitative assessment should address the following:

Field		Laboratory
•	Consistency in the use of standard operating procedures, equipment, sampler	• Consistency of analytical methods and limits of reporting (LOR) for
•	Consistency in the method of sample collection for each media	each analyte
•	Quantification of influence by climatic conditions	• Whether laboratory limits of reporting are set at < 20% of the adopted site criteria value for each analyte
		• Consistent use of one primary and one secondary laboratory

Table 9: Data Comparability

8.4 Representativeness

Data Representativeness is the confidence (expressed qualitatively) that data are representative of each media present on the site.

The qualitative assessment should address the following:

Field		Labora	tory					
•	Samples are collected in accordance with the DQOs Receipt of samples within holding times Receipt of intact samples	•	All analy holdi	samp) ysed ing tim	les are within nes	extr their	acted respe	and ective
•	Receipt of adequately preserved samples							

Table 10: Data Representativeness

8.5 Precision

Data Precision is a quantitative measure of the variability (or reproducibility) of data.

Intra-laboratory or Inter-laboratory Duplicate Samples (B) results are compared with Primary Sample (A) results using Relative Percentage Differences (RPDs) according to the following formula:

$$\% RPD = \left| \frac{A - B}{A + B} \right| \times 200$$

Duplicate sampling rates for this assessment (**for each separate sample batch**) are to be tested for all the same analytes as the primary sample:

Type of QC Sample	Control Limit
Field Intra-Laboratory Duplicate (Blind)	RPD < +/- 50%
Field Inter-Laboratory Duplicate (Split)	RPD < +/- 50%

Table 11: Data Precision

Where the laboratory has reported results for a particular analyte below the limit of reporting for either the primary sample or a duplicate sample, the RPD is reported as 'Not Calculable' or NC. A discussion should be made as to which sample should be adopted and compared against the relevant assessment criteria. However, no discussion is required where both the primary sample and the duplicate sample for a particular analyte are below the limit of reporting.

8.6 Accuracy

Surrogate Spike

Data Accuracy is a quantitative measure of the closeness of reported data to the true value. Laboratory measured recovery of analytes in lab control samples with known concentrations. Laboratory QA/QC testing is to include:

Laboratory QA/QC Sample	Frequency
Method Blank	1 per 20 samples
Matrix Spike	1 per 20 samples
Laboratory Duplicate	Laboratory defined
Laboratory Control	Laboratory defined

All organic samples

Table 12: Data Accuracy

9 SITE INVESTIGATION AND SCREENING LEVELS

9.1 General

The selection of appropriate human health and ecological site assessment criteria were based on the "National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1)", NEPC (2013).

Full details of the site investigation and screening levels for each potential contaminant of concern in soils identified in Section 6 are presented in Appendix F.

9.2 Soils Investigation and Screening Levels

9.2.1 Health Investigation Levels (HILs)

The NEPM presents Tier 1 Health Investigation Levels (HILs) for a broad range of chemicals such as metals, inorganics, PAHs, phenols, pesticides and other organics. The HILs are applicable to generic land uses such as residential, commercial/industrial or public open space and all soil types, generally within the first 3 metres of soil below ground level. The HILs have been applied to assess human health risks via all relevant pathways of exposure.

Based on the proposed development, soil investigation results within the site will be assessed against the **HIL 'B'** – *Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.*

9.2.2 Health Screening Levels (HSLs)

The NEPM presents Tier 1 Health Screening Levels (HSLs) for the following petroleum compounds and fractions:

- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- Naphthalene; and
- TPH C6-C10 and TPH >C10-C16 fractions

The HSLs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and different soil types between the ground surface and soils >4 metres below ground level. The HILs have been applied to assess human health risks via the inhalation and direct contact pathways of exposure.

9.2.3 Ecological Investigation Levels (EILs)

The NEPM presents Ecological Investigation Levels (Interim EILs) for As, Cu, CrIII, Ni, Pb, Zn, DDT and naphthalene.

The EILs are applicable to generic land uses such as areas of ecological significance, urban residential areas and public open space, and commercial/industrial land uses. The EILs have been applied to assess risks to terrestrial ecosystems, generally, within the top 2 metres of soil at the final surface/ground level.

Site specific EILs for Copper, Zinc, Nickel and Chromium III can be derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula EIL = ABC + ACL.

The ABC of a contaminant is the soil concentration in a specified locality that is the sum of the naturally occurring background level and the contaminant levels that have been introduced from diffuse or non-point sources by generating anthropogenic activity not attributed to industrial, commercial, or agricultural activities.

The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required. ACLs are based on the soil characteristics of pH, CEC and clay content. Different soils types / profiles will have different contaminant EILs rather than a single generic EIL for each contaminant. ACLs apply chromium III (CrIII), copper (Cu), nickel (Ni) and zinc (Zn) for site-specific EIL determination. The soil properties to be measured for site-specific derivation of ACLs for CrIII, Cu, Ni and Zn are summarised below:

- pH Cu
- CEC Cu, Ni, Zn
- % clay CrIII

Note – *the lowest concentration of copper that is derived from the pH or the CEC calculation is to be used for the ACL.*

Insufficient data was available to derive ACLs for As, Pb, DDT and naphthalene. As a result, the derived EILs are generic to all soils and are presented as total soil contaminant concentrations in Tables 1(B)4 and 1(B)5.

9.2.4 Ecological Screening Levels (ESLs)

Table 1B (6) of the NEPM presents Ecological Screening Levels (ESLs) for TPH C6-C40 fractions, BTEX and benzo(a)pyrene.

The ESLs are applicable to generic land uses such as areas of ecological significance, urban residential areas and public open space, and commercial/industrial land uses. The ESLs have been applied to assess risks to terrestrial ecosystems, generally, within the top 2 metres of coarse or fine soil at the final surface/ground level.

9.2.5 Petroleum Hydrocarbon Management Limits

Table 1B (7) of the NEPM presents petroleum hydrocarbon management limits for application to TPH fractions C_6 - C_{10} , $>C_{10}$ - C_{16} , $>C_{16}$ - C_{34} and $>C_{34}$ - C_{40} . The management limits are applicable for coarse or fine soils in residential, parkland, public open space or commercial/industrial land uses following consideration of relevant ESLs and HSLs.

9.2.6 Asbestos

Health screening for asbestos in soil, which are based on scenario-specific likely exposure levels, are adopted from the WA DoH guidelines and are referred in Table 7 in Schedule B1.

		Health Screening Level (w/w)				
Form of asbestos	Residential A ¹	Residential Residential Recr A ¹ B ²		Commercial/ Industrial D ⁴		
Bonded ACM	0.01%	0.04%	0.02%	0.05%		
FA and AF ⁵ (friable asbestos)	0.001%					
All forms of asbestos		No visible asbestos for surface soil				

Table 13 Health screening levels for asbestos contamination in soil

- 1. Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
- 2. Residential B with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
- 3. Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.
- 4. Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.
- 5. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures (refer Section 4.10). This screening level is not applicable to free fibres.

9.3 Export of Waste

To assess the waste classification of materials to be disposed of off-site, The NSW EPA refers to the NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste".

10 SOIL INVESTIGATION

10.1 General Methodology

The soil investigations were carried out by Aargus on the 23rd November 2010 and 12th August 2021 and were designed to meet the Data Quality Objectives. The fieldwork procedures adopted were carried out in general accordance with the Aargus fieldwork protocols, which are based on industry standard practice as prescribed in the NEPM.

Each borehole was drilled using stainless steel hand augers and/or stainless steel trowel.

The boreholes were backfilled with spoil generated from the borehole.

10.2 Sampling Design Rationale

Six boreholes (S1 to S6) were drilled during the Aargus 2010 investigation, whilst sixteen (16) were drilled during the Aargus 2021 investigation to provide general site coverage with consideration given to accessibility, previous site features and the proposed development zones.

It is considered that the number of sampling points adopted meets the minimum requirements of the NSW EPA "Sampling Design Guidelines" (2022) for a site area of 6,200m². The borehole locations are shown in Figure 4 of Appendix 23.9m.

10.3 Sampling Density and Sampling Depth

Boreholes were advanced through fill material and terminated into natural soils to allow for the collection of at least one soil sample from fill material and one from natural soils (where required).

10.4 Sampling Methodology

Soil sampling was carried out in general accordance with Aargus Fieldwork Protocols. In summary:

Soil samples were collected using a stainless steel hand auger and/or stainless steel hand trowel.

Samples were transferred into clean laboratory supplied containers using a hand trowel.

In general, each soil sample was divided into two sub-samples. One of the sub-samples was placed into a laboratory-supplied container and a second sub-sample was placed in a separate zip-lock bag for field headspace screening using a PID.

Sampling of asbestos was undertaken as follows:

One wetted 500ml sample from each sampling location was submitted for laboratory analysis for AF.

10.5 Field Tests

A calibrated Photo-ionisation Detector (PID) meter was used to obtain the following field measurements:

- Background concentrations of ionisable volatile organic compounds (VOCs) in the ambient air taken approximately 5 to 10 metres upwind of the general work area; and
- Headspace analysis of bagged soil samples collected to detect the presence of ionisable VOCs.

The PID readings were observed before and after each measurement of a sample to ensure that the PID was operating correctly. The procedures followed in performing field headspace on soil samples can be found in the Aargus Field Protocols.

Readings of PID maximums, fluctuations and general comments of observation were recorded in Aargus field record forms included in Appendix G. The PID calibration certificate can be found in Appendix G.

10.6 Soil Laboratory Analysis

Soil samples were submitted to their respective laboratories as specified in Section 11.2. The schedules of analysis for each sampling batch are presented in Appendix J.

11 QUALITY ASSURANCE / QUALITY CONTROL

11.1 Field QA/QC

11.1.1 General

The frequency required for each field quality assurance / quality control (QA/QC) sample is presented in the table below.

Table 14: C)A/OC	Sampling	Frequency

	Intra-Lab Duplicates	Inter-Lab Duplicates	Rinsates	Trip Blanks	Trip Spikes
Sampling Frequency	1 in 20 primary samples	1 in 20 primary samples	1 / Day	1 / Day	1 / Day

11.1.2 Field Duplicates

Duplicates of primary samples were collected to enable the assessment of variability in analyte concentrations between samples collected from the same sampling point. The table below list the duplicate soil samples collected with their corresponding primary samples.

Table 15: Soil Field Duplicate Samples

Primary Sample ID	Sample Depth (m bgl)	Blind Duplicate ID	Split Duplicate ID	Date Sampled
BS10	0-0.1	D1	SS1	12.08.2021

11.1.3 Rinsates

Rinsate samples recovered for each day in which sampling took place to identify possible cross contamination between the sampling locations are listed in the table below.

Sample ID	Equipment Type	Sample Media	Date Collected
R1	Hand Trowel	Soil	12.08.2021

Table 16: Rinsate Samples

11.1.4 Trip Blanks / Spikes

Trip spike and trip blank samples were collected to assess the effect of sample handling on volatile concentrations in the samples collected and are listed in the table below.

Table 17: Trip Blank/Trip Spikes

Sample ID	QC Sample Type	Media	Date Collected
TB1	Trip Blank	Soil	12.08.2021
TS1	Trip Spike	Soil	12.08.2021

11.1.5 Sample Handling, Storage and Transport

The following sampling handling, storage and transport procedures were adopted to ensure sample integrity:

- Samples were collected in laboratory supplied containers. A list of sample preservation methods and the types of sample containers used are attached in Appendix H.
- Soil sample containers were placed immediately into a chilled cooler box and dispatched to their respective analytical laboratories on the same day. If this was not possible, samples were temporarily held overnight in the Aargus office refrigerator at a temperature of no greater than 4 °C and dispatched the following day.
- A Chain of Custody form (COC) was completed for all samples collected and included with the samples for transport to their respective laboratories for chemical analysis. Copies of COCs are included in Appendix I.
- All glass bottles were individually bubble wrapped for protection and insulated containers/coolers were used for sample shipment.
- Disposable nitrile gloves were used for OH&S purposes and were changed between every sample location.

11.1.6 Decontamination Procedures

The decontamination of non-dedicated sampling equipment was achieved by washing with phosphate-free detergent and tap water, followed by a final rinse with distilled water. Decontamination was conducted after the collection of samples at each sample location. A clean pair of disposable gloves was used when handling each sample.

11.1.7 Calibration of Equipment

The 10.6eV lamp of the PID was calibrated with isobutylene gas at 100ppm prior to commencement of fieldwork and prior to commencement of each day's fieldwork. The battery in the PID unit was recharged after every day's use in the field.

Copies of calibration records for each relevant item of equipment used can be found in Appendix G.

11.2 Laboratory QA/QC

11.2.1 Laboratories Used

The following NATA-accredited laboratories were commissioned to carry out laboratory analysis of soil, groundwater and soil vapour samples collected:

- Primary Laboratory (2021) Eurofins MGT (Sydney)
- Primary Laboratory (2010) SGS Environmental (Sydney)
- Secondary Laboratory ALS Environmental
- ASET Environmental conducted asbestos analysis on selected primary soil samples

These laboratories also operate Quality Systems that are designed to comply with ISO/IEC 17025. All primary samples, blind duplicates, rinsate samples, trip blank/spikes were dispatched to the primary laboratory. All split samples were dispatched to the secondary laboratory. Laboratory Certificates of Analysis are included in Appendix I.

11.2.2 Holding Times

The holding times for chemicals analysed are presented in Appendix H and were based on USEPA methods, Standard Methods for the Examination of Water and Wastewater (APHA).

11.2.3 Test Methods and Practical Quantitation Limits

The test methods adopted by the laboratories are listed in Appendix H and Practical Quantitation Limits (PQLs) adopted are specified within the Laboratory Certificates of Analysis included in Appendix I.

The methods used by the laboratories generally comply with those listed in the NEPM such as Standards Australia and International standards (US EPA SW-846, APHA 2005, ASTM 2008). Alternate methods may be used by the laboratories however the alternative method must be at least rigorous and reliable as the reference method, and either that:

- it has been validated against an appropriate certified reference material (CRM) on the range of soil types and concentrations most likely to be analysed. This requires adequate recovery of analytes using CRMs during method validation, as well as regular participation in national proficiency trials by bodies such as the National Measurement Institute (NMI) or Proficiency Testing Australia (PTA) or other accredited provider; and / or
- it has been verified against quantitative data generated by a laboratory that is accredited for the reference method to ISO 17025 by NATA or one of its mutual recognition agreement partners.

The laboratory should document the method performance verification and make the data available for independent audit.

11.3 QA/QC Data Evaluation

A full evaluation of the Data Quality Indicators (DQIs) for both fieldwork and laboratory procedures were assessed with reference to Appendix V of the NEPM and Guidelines for the NSW Site Auditor Scheme (3rd ed.), 2017. In summary, the findings of the QA/QC evaluation indicated the following:

- Data Completeness The data set is considered to be adequately complete.
- Data Comparability The data set is considered to be adequately comparable.
- Data Representativeness The data set is considered to be adequately representative.
- Data Precision The data set is considered to be adequately precise.
- Data Accuracy The data set is considered to be adequately accurate.

The sampling methods (including sample preservation, transport and decontamination procedures) and laboratory methods followed during this investigation works were consistent with Aargus protocols and were found to meet the DQOs for this project.

It is therefore considered that the data is sufficiently reliable and that the results can be used for the purpose of this project.

12 FIELD OBSERVATIONS

12.1 Geology

Based on surface and sub-surface conditions observed during the intrusive investigations, the surface and sub-surface profile across the site is summarised in the table below.

Geological Unit	Lithological Description	Depth Ranges:
		Top to Base (m bgl)
Fill	Silty Clay, low plasticity, grey and dark brown with a trace of gravel, glass, asphalt, concrete and brick	0.0m to 0.5m
Natural Soils (Residual)	Silty CLAY, medium plasticity, orange brown	0.4m to 0.5m

Table 18: Summary of Geological Observations

The following additional observations were made:

- No hydrocarbon staining was observed within any of the borehole locations.
- No hydrocarbon odours were encountered within any of the borehole locations.
- No fibre-containing fragments were observed in any of the borehole samples.

We recommend that this section be read in conjunction with Figure 4 (Sample Location Plan) in Appendix A and the Daily Work Sheets in Appendix G.

12.2 Field Headspace Results

Ionisable VOC detections in PID readings taken from soil samples subjected to field headspace analysis were all less than 1ppm. The PID field record forms can be found in Appendix G.

13 LABORATORY RESULTS

13.1 General

A comparison of soil laboratory results against their respective assessment criteria (as specified in Section 9) are presented in the summary tables in Appendix J. Certificates of laboratory analysis are attached in Appendix I. A discussion of the results is presented in the following sub-sections.

13.2 Soil Results

13.2.1 Heavy Metals

13.2.1.1 Health Investigation Levels (HILs)

As indicated in Table A1, the concentrations of the discrete heavy metals were below the Health Investigation Level (HIL) for a residential unit development, that being the HIL 'B'.

13.2.1.2 Ecological Investigation Levels (EILs)

As indicated in Table A1, the arsenic concentrations were below the Ecological Investigation Level (EIL) for urban residential and public open space.

The EILs for Copper, Zinc and Nickel were derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula EIL = ABC + ACL.

The ABC for the site has been determined by recovering a sample from an appropriate reference point, that being borehole S10 (0.4-0.5m), a sample of uncontaminated (NATURAL) strata from within the site.

The ABC concentrations are summarised in Table A3.

The results of pH and CEC and %clay for the natural soil samples are summarised in Table A2. Based on the results in Table A2, the site ACLs for Cu, Ni and Zn have been derived and are provided in Table A3.

The calculated EIL for Cu, Pb, Ni and Zn, after appropriate rounding, have been summarised in Table A3.

Therefore, as shown in Table A4, the Cu, Pb, Ni and Zn concentrations from the proposed deep soil landscaping area within the site were below the site derived EILs.

13.2.2 TRH, BTEX, NAPHTHALENE &/OR BENZO(a)PYRENE

13.2.2.1 Health Screening Levels (HSLs)

As indicated in Table B1, the F1 (C₆-C₁₀), F2 (>C₁₀-C₁₆), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were below the HSL 'A' & HSL 'B' for a clay soil profile with a source depth of "0m to <1m".

13.2.2.2 Ecological Screening Levels (ESLs)

As indicated in Table B2, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), benzene, toluene, ethyl benzene, xylenes and benzo(a)pyrene concentrations were below the ESL for a fine grained soil texture in an "urban residential and public open space" environment.

13.2.2.3 Management Limits

As indicated in Table B3, the F1 (C₆-C₁₀), F2 (>C₁₀-C₁₆), F3 (C₁₆-C₃₄) and F4 (C₃₄-C₄₀) concentrations were below the Management Limits for a fine grained soil texture in an "residential parkland and public open space" environment.

13.2.3 PAH, OCP, PCB

13.2.3.1 Health Investigation Levels (HILs)

As indicated in Table C, the concentrations of the benzo(a)pyrene (as TEQ), Total PAH, OCP and PCB were below the Health Investigation Level (HIL) for a residential unit development, that being the HIL 'B'.

13.2.4 Asbestos

As indicated in Table D, no asbestos was detected in any of the samples analysed, with the exception of:

- Chrysotile asbestos (AF) was detected at a concentration of 0.0002%w/w in sample S1 (0-0.1m) which was below the assessment criteria of 0.001%w/w (FA/AF).
- Chrysotile asbestos (AF) was detected at a concentration of 0.001% w/w in sample S3 (0-0.1m) which was equal to the assessment criteria of 0.001% w/w (FA/AF).

14 CONCLUSION AND RECOMMENDATIONS

With reference to Clause 4.6 of the State Environmental Planning Policy (Resilience and Hazards) 2021, the site is considered to be suitable for the proposed use of the site for three medium-density residential buildings including basement car parking and deep soil landscaping areas.

Any soils requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

Thank you for the opportunity to undertake this work. We would be pleased to provide further information on any aspects of this report.

For and on behalf of **Aargus Pty Ltd**

Written by:

Saad Bin Suleman Environmental Engineer

Reviewed By:

Mark Ketty Mark Kelly

Principal Environmental Consultant

LIMITATIONS

The Aargus assessment is based on the result of limited site investigations and sample testing. Neither Aargus, nor any other reputable consultant, can provide unqualified warranties nor does Aargus assume any liability for site conditions not observed or accessible during the time of the investigations.

Despite all reasonable care and diligence, the materials encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions, truck movement or contractor movement of soils and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to Aargus investigations and assessment.

This report and associated documentation and the information herein have been prepared solely for the use of the client at the time or writing the report and is valid (for the purposes of management or transport of material) for a period of one month only from the date of issue. Any other reliance assumed by third parties on this report shall be at such parties' own risk. Any ensuing liability resulting from use of the report by third parties cannot be transferred to Aargus.

Whilst this report provides a review of site conditions encountered at sampling locations within the investigation, it should be noted that if materials are proposed to moved from site - Part 5.6, Section 143 of the Protection of the Environment Operations (POEO) Act 1997 states that is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that all material removed from a site must be accompanied by an appropriate waste classification report and materials are disposed of appropriately. An environmental or validation report does not constitute a waste classification report and results are treated

differently. Aargus accepts no liability for the unlawful disposal of waste materials from any site. Aargus does not accept any responsibility for the material tracking, loading, management, transport or disposal of waste from the site. If material is to be removed from a site, before disposal of any material to a licensed landfill is undertaken, the site owner must ensure an appropriate waste classification exists for all materials on the site planning to be removed, the waste producer will need to obtain prior consent from the licensed landfill/recycler. The receiving site should check to ensure that the material received matches the description provided in the report.

Opinions are judgements, which are based on our understanding and interpretation of current regulatory standards, and should not be construed as legal opinions.

Appendix L – Important information about your environmental site report should also be read in conjunction with this report.

REFERENCES

This report was prepared with reference to the following guiding documents:

- NSW EPA "Sampling Design Guidelines" (2022).
- NSW Department of Planning and Environment (2022) The State Environmental Planning Policy (Resilience and Hazards) 2021: "*Chapter 4 Remediation of Land*".
- National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No.1).
- NSW DEC "Guidelines for the NSW Site Auditor Scheme" (2017, 3rd edition). NSW Environment Protection Authority, Sydney.
- NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste".
- NSW EPA "Guidelines for Consultants Reporting on Contaminated Sites" (2020). NSW Environment Protection Authority, Sydney.
- Aargus Pty Ltd (2010) *Preliminary Environmental Site Assessment* (Ref: ES3897, dated December 2010).
- JK Geotechnics Pty Ltd (2021) "Geotechnical Report" (Ref: 24633Lrpt-rev 1, dated 1st June 2021).

APPENDIX A

SITE PLANS

PROJECT DETAIL	S	DRAWING D	ETAILS		
Project Title	Detailed Site Investigation	Figure No.	1	Rev No.	0
Project No.	ES8320	Scale	As Shown	Size	A4
Client	Eloura Holdings Pty Ltd	Drawn by	SB	Date	11.08.2021
Site Address	5-9 Croydon Street, Lakemba NSW	Approved by	МК	Date	18.08.2021

ABN 75 050 212 710

Aargus Pty Limited

ABN 75 050 212 710

Aargus Pty Limited

BOREHOLE LOCATION PLAN ON ORIGINAL SURVEY

PROJECT DETAILS		DRAWING D	ETAILS		
Project Title	Detailed Site Investigation	Figure No.	3	Rev No.	0
Project No.	E\$8320	Scale	NTS	Size	A4
Client	Eloura Holdings Pty Ltd	Drawn by	SB	Date	11.08.2021
Site Address	5-9 Croydon Street, Lakemba NSW	Approved by	МК	Date	18.08.2021

ABN 75 050 212 710

Aargus Pty Limited

BOREHOLE LOCATION PLAN

BOREHOLE LOCATION PLAN

ABN 75 050 212 710

Aargus Pty Limited

PROPOSED DEVELOPMENT PLANS

APPENDIX B

December 2 Provide Coverage 1 2007/202 December 2 Provide Coverage 2 2007/202 December 2 2007/202 D	3 4	Revision Description For Coordination For Coordination Site Plan Lindette	Date 18/08/2022 18/10/2022 06/02/2022
Contract Service Serv	5	Site Plan Update Sewer Service Overlay	26/07/202
Conception in the advectory in the design of the control of the c			
Compare and the second of the			
Compare the a 2-entropy The decision of the			
Unique of the second of the s	©Copyright This drawin	t Team 2 Architects g is protected by copyright. All right are reserved	. Unless permitted under the
The A character. If it is main a character in the state of a yeak stare produce and a state of yeak stare produce and yeak stare produce and yeak stare produce and yeak stare produce and yeak stare produces and yeak stare	Copyright A reproduced copyright o Constructio	Act 1968. No part of this drawing may in any form I, published, broadcast or transmitted without the owner. Please Note: If the status of this drawing is on it may be subject to change, alteration or amend	or by any means be prior written permission of the not signed off For dment at the discretion of
Additional of the proceeding with own. Addit	ream 2 Arc whether spo result of yo	nitects. If so, Team 2 Architects is not liable for an ecial, consequential, direct or indirect, suffered by ur use of this drawing for construction purposes.	y loss, damage, harm or injury you or any other person as a
Proceedings with work. If all directions of the less in influenzes unlease note of service. No direction If all directions of the less in a standards of the region of the principal and whether show proceedings with the region method of the principal and the principal of the principal of the principal of the principal and the principal of the principal of the principal of the principal and the principal of the principal of the principal of the principal and the principal of the principal of the principal of the principal and the principal of the principal of the principal of the principal and the principal of the principal of the principal of the principal and the principal of the prin	1. Architec and specifi	tural drawings shall be read in conjunction with ications. Any discrepancies shall be referred to	other consultant drawings team 2 architects before
enders by the proceeding with we. A work to be airford with an exceedence with the requirements of the principal enders by the proceeding with we. A work to be airford with a standards. Standards and the principal enderstandards and the	proceeding 2. All dime shall be ob 3. All dime	g with work. Insions and levels are in millimeters unless noted stained by scaling the drawing. Insions to be checked on site with any discrepar	d otherwise. No dimension ncies referred to team 2
Eloura Developments Lakemba Pty Ltd State Tisse State Plan Taba Int: 200 ext Int International Street State Plan Taba Int: 200 ext Int International Street State Plan Topological Street State Plan State Plan Topological Street State Plan State Plan Topological Street State Plan Topological Street St	architects k 4. All work certifying a	before proceeding with work. to be carried out in accordance with the require authority, current ncc & australian standards.	ements of the principal
Stee Plan			
Site Plan			
A C C H I T E C T S SCALE 1:200 TECONOL STREET ADARTMENTS SCALE 1:200 TECONOL STRE			
A R C H I T E C T S SCALE 1:200 TELOURA DEVELOPMENTS Lakemba Pty Ltc 1:45 Roberts Road 3reenacre NSW 2190 TELORATOR Street 1:45 CADE T SCALE 1:200 A R C H I T E C T S SCALE 1:200 TELORATOR Street 1:45 CADE T SCALE 1:200 A R C H I T E C T S SCALE 1:200 TELORATOR STREET 1:45 C T SCALE 1:200 C C C SCALE 1:200 C C SCAL			
A R C H I T E C T S SCALE 1:200 COURT OBJECT OF STORE SCALE 1:200 COURT OBJECT OF STORE COURT OF STORE CO			
Eloura Developments Lakemba Pty Lto Scale 1/200 Technolos Street, 1:05 Roborts Road 3reenare NSW 2190 Technolos Street, 1:05 Roborts Road 3reenare NSW 2190 Technolos Street, 1:07 Response 20479-11 Content of Co			
Eloura Developments Lakemba Pty Ltc Si de S Roberts Road Greenare NSW 2190 TERMONTONIC STORES SCALE 1:200 MELEOURA A R C HITECT SCALE 1:200 MELEOURA 2047-11 Chermont Stores 1: do Tage Stores 1:			
Eloura Developments Lakemba Pty Ltc 1-65 Roberts Road Greenacre NSW 2190 TERMON CALE 1:200 TERMON A R C HITECT COUCOUNT COUNT			
Eloura Developments Lakemba Pty Ltd ide Roberts Road Scale 1:200 Eloura Developments Lakemba Pty Ltd ide Roberts Road Scale 1:200 CECOURD A R C H I T E C T S CALE 1:200 CONTRACTOR STREET in forward 2006 in forward 20			
Eloura Developments Lakemba Pty Ltcs Side Roberts Road Greenare NSW 2190 TECOVICALE 1:200 A R C HIT E C C T S CALE 1:200 CONTRACTOR STREET 1:200 CONTRACTOR STREET 1:			
Scale 1:200 (A) Dry OK (C) Control (C) Control (C) C (
A R C H I T E C T S SCALE 1:200 TEOQUAN STREET, 100 SCALE 1:200 SCALE 1:200 TEOQUAN STREET, 100 SCALE 1:200 TEOQUAN STREET, 100 SCALE 1:200 TEOQUAN STREET, 100 SCALE 1:200 TEOQUAN STREET, 100 SCALE 1:200 SCALE 1:200			
A C H I T E C T South Scale 1:200 TEORIO Street 1:65 Roberts Road 3reenacre NSW 2190 TEORIO Street 1:66 Roberts Street 1:66 Roberts Road 3reenacre NSW 2190 TEORIO Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 1:60 R C H I T E C T South 204/9:11 Claremot Street 3:60 R C H I T E C T South 2:60 R C H I T E C T South 3:60 R C			
Eloura Developments Lakemba Pty Ltc Sidemacre NSW 2190 Eloura Developments Lakemba Pty Ltc Sidemacre NSW 2190 CEALE 1:200 CEALE 1:			
Eloura Developments Lakemba Pty Ltc 1-65 Roberts Road Greenacre NSW 2190 TECALE 1:200 TECALE 1:200 A R C H I T E C T S SCALE 1:200 COMPANY A R C H I T E C T S SCALE 1:200 COMPANY A R C H I T E C T S SCALE 1:200 COMPANY Company Comp			
Eloura Developments Lakemba Pty Ltc 1-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltc 1-65 Roberts Road Greenacre NSW 2190 TECON A R C H I T E C T S CONSTRUCT A R C H I T E C T S C C C T S C C C T S C C C T S C C C C C C C C C C C C C C C C C C C			
Eloura Developments Lakemba Pty Lto 31-65 Roberts Road Greenacre NSW 2190 TEACHITECTS A R C H I T E C T S C C S C C S C C C C C C C C C C C C C C			
Eloura Developments Lakemba Pty Ltc 1-65 Roberts Road Greenacre NSW 2190 CALE 1:200 CALE 1:200 CA			
Eloura Developments Lakemba Pty Ltc 1-65 Roberts Road Greenacre NSW 2190 TECALE 1:200 A R C H I T E C C T S A R C H I T E C C T S MELBOURA CALE 1:200 MELBOURA 2049-11 Claremont Street 1: Indoltemana South Yara VIC 314 ABN: 72 104 833 50 MELBOURA 2049-11 Claremont Street South Yara VIC 314 ABN: 72 104 833 50 Reg Vic: 1934 Tolect# Torcyclon Street Lakemba NSW 2195 Teter Site Plan Tolect# 1: 200 @A1 C C C C C C C C C C C C C C C C C C C			
Eloura Developments Lakemba Pty Ltc Stoperts Road Greenacre NSW 2190 CONTRACTOR Street Leonards NSW 2065 1 0 1 2 3 4 5 10 SCALE 1:200 CONTRACTOR Street Leonards NSW 2065 1 0 1 2 9437 3166 Stoperts Road Contractor NSW 2065 1 0 1 2 9437 3166 Contractor NSW 2065 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Eloura Developments Lakemba Pty Ltc Sit-55 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltc Si d5 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltc 51-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltc St-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Lto States Road Greenacre NSW 2190 Control of the states of the s			
Eloura Developments Lakemba Pty Lto S1-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltd 51-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Lto a1-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltd 1-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltd 1-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Lto 1-65 Roberts Road Greenacre NSW 2190			
Eloura Developments Lakemba Pty Ltd 51-65 Roberts Road Greenacre NSW 2190			
A R C H I T E C T S SCALE 1:200			oura
0 1 2 3 4 5 10 0 1 2 3 4 5 10 0 1 2 3 4 5 10 0 1 2 3 4 5 10 0 1 2 3 4 5 10 SCALE 1:200 DECOUPT SCALE 1:200 DECOUPT DECOUPT DECOUPT MELBOURN COUPT /45 Chandos Street, t Leonards NSW 2065 : + 61 2 9437 3166 Endotes Street South Yarra VIC 314 ABN: 72 104 833 50 South Yarra VIC 314 ABN: 72 104 833 50 Endotes Street South Yarra VIC 314 ABN: 72 104 833 50 Endotes Street South Yarra VIC 314 Toyodon Street Apartments S Croydon Street Lakemba NSW 2195 He: Site Plan Endotes T Street: Drive: Ckd: 1136 1: 200 @A1 GZ VZ			oura
0 1 2 3 4 5 10 0 1 2 3 4 5 10 0 1 2 3 4 5 10 SCALE 1:200 Image: Constraints South Yarra VIC 314 ARCHITCLAREMONT Street VIDNEY MELBOURN 204/9-11 Claremont Street South Yarra VIC 314 YAS Chandos Street, it Leonards NSW 2065 Exinfo@team2.com.au South Yarra VIC 314 Yoject: Croydon Street Apartments 5 Croydon Street Apartments 5 Croydon Street Lakemba NSW 2195 Itle: Site Plan @A1 GZ VZ	Elour	ra Developments Lake	DULTA emba Pty Lto
0 1 2 3 4 5 10 SCALE 1:200 SCALE 1:200 Image: Constraint of the state of the sta	Elour 61-65 R Greena	ra Developments Lake Roberts Road cre NSW 2190	DULT emba Pty Lto
v i z 3 4 5 10 SCALE 1:200 SCALE 1:200 Image: Comparison of the second of the secon	Elour 61-65 R Greena	Ta Developments Lake Coberts Road Cre NSW 2190	DULTA emba Pty Lto
SCALE 1:200 TEALE 1:200 TEALE 1:200 MELBOURN A R C H I T E C T S MELBOURN VAS Chandos Street, St Leonards NSW 2065 204/9-11 Claremont Stree St Leonards NSW 2065 South Yarra VIC 314 ABN: 72 104 833 50 South Yarra VIC 314 ABN: 72 104 833 50 Reg Vic: 1934 Yroject #: Croydon Street Lakemba NSW 2195 Ite: Site Plan Scale: 1136 1: 200 @A1 GZ VZ	Elour 61-65 R Greena	a Developments Lake	DULTA emba Pty Lto
A R C H I T E C T S MELBOURN 204/9-11 Claremont Street 2 + 61 2 9437 3166 2 + 61 2 9437 3166 2 info@team2.com.au Reg NSW: 9940 Project: Croydon Street Apartments 5 Croydon Street Lakemba NSW 2195 Ite: Site Plan Toject #: 1136 1 : 200 @A1 GZ VZ	Elour 61-65 R Greena	Ta Developments Lake Roberts Road cre NSW 2190	DULTA emba Pty Lto
A R C H I T E C T S MELBOURN 20479-11 Claremont Street South Yarra VIC 314 ABN: 72 104 833 50 204/9-11 Claremont Street South Yarra VIC 314 ABN: 72 104 833 50 209 2019 20	Elour 61-65 R Greena	Ta Developments Lake Roberts Road cre NSW 2190	DUITA emba Pty Lto
A R C H I T E C T S MELBOURN /45 Chandos Street, it Leonards NSW 2065 :+ 61 2 9437 3166 :: info@team2.com.au keg NSW: 9940 Project :: Croydon Street Apartments 5 Croydon Street Lakemba NSW 2195 ite: Site Plan Toject #: 1136 1: 200 @A1 GZ VZ	Elour 61-65 R Greena	Ta Developments Lake Roberts Road cre NSW 2190	DULTA emba Pty Lto
/45 Chandos Street, 204/9-11 Claremont Street it Leonards NSW 2065 South Yarra VIC 314 it + 61 2 9437 3166 ABN: 72 104 833 50 it info@team2.com.au Reg Vic: 1934 Reg NSW: 9940 Reg Vic: 1934 Project: Croydon Street Apartments 5 Croydon Street Lakemba NSW 2195 itle: Site Plan roject #: Scale: 1136 1: 200 @A1 GZ	Elour 61-65 R Greena	The second secon	DUITA emba Pty Lto
info@team2.com.au Reg NSW: 9940 Project: Croydon Street Apartments 5 Croydon Street Lakemba NSW 2195 itle: Site Plan roject #: 1136 1:200 @A1 GZ VZ	Elour 61-65 R Greena	A Developments Lake Roberts Road Incre NSW 2190	10 Interpretation
Croydon Street Apartments 5 Croydon Street Lakemba NSW 2195 Itte: Site Plan	Elour 61-65 R Greena SyDNEY 1/45 Cha 51 Leona	CALE 1:200 CALE 1	10 10 10 11 Claremont Stree South Yarra VIC 314 ARN: 72 104 POINT South Yarra VIC 314 ARN: 72 104 POINT South Yarra VIC 314
b Croydon Street Lakemba NSW 2195 Itte: Site Plan roject #: <u>Scale:</u> 1136 1:200 @A1 GZ VZ	Elour 61-65 R Greena SyDNEY /45 Cha it Leona :: + 61 2 :: info@ Reg NSV	a Developments Lake Roberts Road Icre NSW 2190	10 10 10 10 10 10 10 10 10 10
itle: Site Plan roject #: 1136 1:200 @A1 GZ VZ	Elour 61-65 R Greena X45 Cha it Leona :: + 61 2 :: info@ Xeg NSV Project: Croy	a Developments Lake Roberts Road Incre NSW 2190	10 10 10 10 10 10 10 10 10 10
roject #: 1136 1:200 @A1 GZ VZ	Elour 61-65 R Greena STONEY /45 Cha it Leona : + 61 2 : info@ keg NSV ?roject: Croyo 5 Croyo 5 Croyo	a Developments Lake Roberts Road Icre NSW 2190	10 10 10 10 10 10 10 10 10 10
$\frac{1}{1136} \frac{1}{1:200} \text{ @A1} \frac{\frac{V}{GZ}}{VZ}$	Elour 61-65 R Greena X/45 Cha Croyo X/2000 X/45 Cha Croyo Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo	a Developments Lake Roberts Road Icre NSW 2190	10 10 10 10 10 10 10 10 10 10
rawing #:	Elour 61-65 R Greena YDNEY /45 Cha it Leona it Leona it Leona it Leona Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo 5 Croyo	CALE 1:200 CALE 1:200 CALE 1:200 CALE 1:200 CALE 1:200 CONSTRUCTION	10 10 10 10 10 10 10 10 10 10
_	Elour 61-65 R Greena YPDNEY /45 Cha it Leona it	a Developments Lake Roberts Road Icre NSW 2190	10 The second stress of the s

Parking Schedule - B2				
Parking Type	Count			
RESI.	72			
RESI. DDA	15			
Grand total B2: 87				

Parking Schedule - B1					
Parking Type Count					
RESI.	45				
VISITOR	29				
VISITOR	1				
SMALL					
Grand total B1: 75					

APPENDIX C

SITE PHOTOGRAPHS

SITE PHOTOGRAPHS

Client:	Eloura Holdings Pty Ltd	
Project:	Detailed Site Investigation	
Site Location:	5-9 Croydon Street, Lakemba NSW	
Job No.:	E\$8320	
Photos Taken By:	SBS	

Photograph Nº 1

View of: General site condition from the north east corner of the site inspected on 12.08.2021

View of: General site condition from the south east corner of the site inspected on 12.08.2021

Photograph Nº 5

Photograph Nº 3

View of: Empty paint drums in the south eastern portion of the site inspected on 12.08.2021

Photograph Nº 6

View of: General site condition from the north west corner of the site inspected on 12.08.2021

View of: General site condition from the eastern corner of the site inspected on 12.08.2021

View of: General site condition from the western portion of the site inspected on 12.08.2021

Photograph Nº 7

View of: General site condition from the south west corner of the site inspected on 12.08.2021

Photograph Nº 10

View of: Metal shed with waste bins in the south western portion of the site inspected on 12.08.2021

View of: Septic tank in the north western corner of the site inspected on 12.08.2021

View of: South west corner of the site inspected on 12.08.2021

SITE PHOTOGRAPHS

Client	Pinestreet Developments	
Project	Preliminary Environmental Site Assessment	
Location	5-7 and 9 Croydon Street, Lakemba	
Job No.	ES3897	
Checked By	MK	Aargus

Photograph N° 1

View of 5-7 Croydon Street looking west from Croydon Street

Photograph N° 3

Photograph N° 2

View of 9 Croydon Street looking west from Croydon Street

Showing typical brick residential building

View of 5-7 Croydon Street looking east from western boundary

Photograph N° 5

Showing typical brick residential building

Photograph N° 6

Showing typical brick residential building

CURRENT LAND TITLE INFORMATION

APPENDIX D

Title Search

25/08/2021 12:39 PM

Client Reference: DI-ES8320

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: AUTO CONSOL 8327-250

SEARCH DATE TIME EDITION NO DATE _____ 25/8/2021 12:39 PM 1 30/10/2008

LAND ----

LAND DESCRIBED IN SCHEDULE OF PARCELS LOCAL GOVERNMENT AREA CANTERBURY-BANKSTOWN PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM SEE SCHEDULE OF PARCELS

FIRST SCHEDULE

SAMSTONE PTY LIMITED SAM HARB PTY LIMITED AS TENANTS IN COMMON IN EQUAL SHARES

(T AE298695)

SECOND SCHEDULE (4 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

- 2 K373367 EASEMENT FOR DRAINAGE AFFECTING THAT PART OF LOT B DP365853 SHOWN SO BURDENED IN PLAN WITH K373367
- 3 M969175 EASEMENT TO DRAIN WATER AFFECTING THAT PART OF LOT B DP365853 AS MORE FULLY DESCRIBED THEREIN
- * 4 AQ246035 CAVEAT BY CANTERBURY-BANKSTOWN COUNCIL

NOTATIONS

UNREGISTERED DEALINGS: NIL

SCHEDULE OF PARCEL	S TITLE DIAGRAM
LOT B IN DP357959	DP357959
LOT B IN DP365853	DP365853
LOT 2 IN DP971844	DP971844
LOT 1 IN DP974686	DP974686.

*** END OF SEARCH ***

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

DI-ES8320

PRINTED ON 25/8/2021

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.
 © Office of the Registrar-General 2021

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

Historical Search

25/08/2021 12:42 PM

Client Reference: DI-ES8320

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

25/8/2021 12:42PM

FOLIO: B/357959

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 8327 FOL 250

Recorded Number Type of Instrument C.T. Issue

----- -----

31/8/1989 TITLE AUTOMATION PROJECT LOT RECORDED FOLIO NOT CREATED

6/5/1998	CONVERTED TO	CONSOL CREATED
	AUTO CONSOL 8327-250	CT NOT ISSUED

*** END OF SEARCH ***

DI-ES8320

PRINTED ON 25/8/2021

© Office of the Registrar-General 2021

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

25/08/2021 12:56 PM

© Office of the Registrar-General 2021

Req:R419125 /Doc:CT 08327-250 CT /Rev:11-Aug-2012 /NSW LRS /Prt:25-Aug-2021 12:53 /Seq:1 of 2 © Office of the Registrar-General /Src:DIRECTINFO /Ref:DI-ES8320

 $\mathbf{202}$ [CERTIFICATE OF TITLE] New South Males Primary Appn No. 7875 Reference to Last Title s REGISTER BOOK Vol. 3262 Fol. 197 8327 Fol. 250 Vol. 7672 Fols. 28 and 29 40 Issued on Transfer No.H726561 and EH request for consolidation CANCELLED m ON ISSUE OF NEW FOLIO ANTO CONSOL 8327-250 THE PRESBYTERIAN CHURCH (NEW SOUTH WALES) PROPERTY TRUST, is now the proprietor of an Estate in Fee Simple subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances liens, and interests as are notified hereon, in FIRSTIN That piece of land Parish in the \mathbf{of} and County of Municipality of Canterbury St. George Cumberland shown in the plan hereon being Lot B in plan lodged with Transfer No.D742043, Lot B in plan lodged with Transfer No.F79254, Lot 2 in plan lodged with Transfer No. 58557 and Lot I in plan lodged with Transfer No. 687936, and part of Lot 5 in D-posited Plan No.4217 and being elso part of Portion 69 granted to John Wall on 13th October 1831. 1972M3277 SECONDLY the mines and deposits specified in Section 141 of the Public Works Act 1912 in the 52 perches parcel shown in in Deposited Plan No. 4217, the plan hereon being another part of Lot 5, above described and being part of a Public Road. January In witness whereof I have hereunto signed my name and affixed my Seal, this day of , 1962 Fifth 6 E yalledge Signed in the presence of Registrar-General. 0r ST CROYDON against altering or adding to this Certificate dated 2128 June 19 6 ho K373367 hansfer rand to strument appurte the land comprised in Certificate of Title Vol. 633/ Tel 228 affecting that part of the land within 9727 sheren as 4 2%. Wide in the plan WITHIN DESCRIBED IS Entered and Augu Augistrar General 742043 79254 ho Mgkg175 Jransfer and Grant dated 1st hovember 1972 of an descement to draw water as more fully set out in the # said instructionent affection that part of The land within described "1- 22 ma metacer wide Shewer in the plan hereon. A 0 cautioned S G Plan A750 85 A are Persons Registered 23rd nonember 1972 16610 Jatao REGISTRAR GENERA 1972M3277 THELAND 0

Title Search

25/08/2021 12:35 PM

Client Reference: DI-ES8320

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: A/357959

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 ----- ---- --- --- 25/8/2021
 12:36 PM
 1
 30/10/2008
 30/10/2008

LAND

LOT A IN DEPOSITED PLAN 357959 AT LAKEMBA LOCAL GOVERNMENT AREA CANTERBURY-BANKSTOWN PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP357959

FIRST SCHEDULE

SAMSTONE PTY LIMITED SAM HARB PTY LIMITED AS TENANTS IN COMMON IN EQUAL SHARES (T AE298695)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

* 2 AQ246035 CAVEAT BY CANTERBURY-BANKSTOWN COUNCIL

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

DI-ES8320

PRINTED ON 25/8/2021

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.
 © Office of the Registrar-General 2021

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

Historical Search

25/08/2021 12:37 PM

Client Reference: DI-ES8320

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

25/8/2021 12:37PM

FOLIO: A/357959

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11400 FOL 102

Recorded Number Type of Instrument C.T. Issue

----- -----

29/7/1989 TITLE AUTOMATION PROJECT LOT RECORDED FOLIO NOT CREATED

1/9/1989 CONVERTED TO COMPUTER FOLIO FOLIO CREATED CT NOT ISSUED

2/8/1999 6051470 DEPARTMENTAL DEALING

30/10/2008 AE298695 TRANSFER EDITION 1

17/7/2020 AQ246035 CAVEAT

*** END OF SEARCH ***

DI-ES8320

PRINTED ON 25/8/2021

© Office of the Registrar-General 2021

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

25/08/2021 12:39 PM

© Office of the Registrar-General 2021

Req:R418926 /Doc:DL A	AE298695 /Rev:31-Oct-2008 /NSW LRS /P	gs:ALL /Prt:25-Aug-2021 12:38 /Seq:	1 of 1
© Office of the hegi.	(2)		
Form: 017	TDANG	T THE I HAVE AND THE REPORT OF A DESCRIPTION OF A DESCRIP	
Licence: 01-05-025	Software Dry Limited	[™] <u>∧</u> ⊏2086950	
Firm name: Simon Diab	& Associates New South Wa	ales AE290093Q	
	Real Property Ac	st 190	
PRIVACT NUTE: Sec	tion 31B of the Real Property Act 1900 (RP Act) auth	forises the Registrar General to collect the inform Property Act Register, Section 968 BB Act mouily	ation
Register is made ava	ilable to any person for search upon payment of a fe	Property Act Register. Section 965 RF Act requin	
STAMP DUTY	Office of State Revenue use only	NSW Treasury	
		Client No: 112076712 31	04
		Duty: \$2.00 Trans No: 51886	51
		Asst details:	
(A) TOPPENS TITLE	If appropriate specify the part transformed		
	A/357959 being Volume 11400 Folio 102 and		/
	Auto Consol 8327-250 being Volume 8327 Folic	250	
(B) LODGED BY	Delivery Name. Address or DX and Telephon	ne	CODES
(-)	Box (mon biab & Associates		T
		· · · · · · · · · · · · · · · · · · ·	
	IN OX 28367 PARMA	(A) A	ITW
	Peterson (antianal), 2008203	2	(Shoriff)
1	Keterence (optional): 2008 203		(Sheriii)
(Ċ) TRANSFEROR	THE PRESBYTERIAN CHURCH (NEW SOU'	TH WALES) PROPERTY TRUST	
	ABN 82 247 231 838		
			J
(D) CONSIDERATION	The transferor acknowledges receipt of the considered above transfers to the transfere	eration of 52,103,125.00 and as regards	
(E) ESTATE	1000	e an estate in ree simple.	
(F) SHARE	100%		
(G)	Encumbrances (if applicable)		
(H) TRANSFEREE	Samstone Pty Limited ACN 070 266 330		1
	Sam Harb Pty Limited ACN 003 029 196		
(II)			
(1)	TENANCY: Tenants in Common in equal shares.		
DATE Solio	108		
(I) I certify that the pe	y color	Cartified compation the monopole of the Deel D	
Lam personally ac	missings) signing opposite, with whom quainted or as to whose identity I am	Act 1900 by the person of named below who si	roperty
otherwise satisfied	, signed this justrument in my presence.	this instrument pursuant to the power of attorned	vspecified.
Signature of witne	ss: X Jum	Signature of attorney: X Y r	
Name of witness	Y ANDREW SILLAR		\ •
Address of witness	11-8 CHALMERS ST.	Signing of the standard of the	SOUTH
	X 100 UTFIL	Powerstationar Broward Broward Broward	appointed
	SYDNET , USA.	Power of Attorney dated 27 June 2005 room	istered
		Certified correct to the purposes of the Real P	roperty Act
		1900 by the person whose signature appeare be	low.
			•
		Signature:	
		(

Signatory's name:

Simon Diab Signatory's capacity: Solicitor for the Transferee

Page 1 of 1 number additional pages sequentially

Title Search

25/08/2021 12:43 PM

Client Reference: DI-ES8320

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: A1/372287

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 ----- ---- ---- ---- 25/8/2021
 12:44 PM
 4
 11/3/2015

LAND

LOT A1 IN DEPOSITED PLAN 372287 AT LAKEMBA LOCAL GOVERNMENT AREA CANTERBURY-BANKSTOWN PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP372287

FIRST SCHEDULE

ACN 155 450 865 PTY LTD

(T AJ322483)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

* 2 AQ246036 CAVEAT BY CANTERBURY-BANKSTOWN COUNCIL

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

DI-ES8320

PRINTED ON 25/8/2021

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.
 © Office of the Registrar-General 2021

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

Historical Search

25/08/2021 12:45 PM

Client Reference: DI-ES8320

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

25/8/2021 12:46PM

FOLIO: A1/372287

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 6331 FOL 229

Recorded Number Type of Instrument C.T. Issue

----- -----

2/9/1989 TITLE AUTOMATION PROJECT LOT RECORDED FOLIO NOT CREATED

14/12/1992 CONVERTED TO COMPUTER FOLIO FOLIO CREATED CT NOT ISSUED

31/1/2003 9334923 TRANSFER EDITION 1

7/7/2005 AB605922 TRANSFER 7/7/2005 AB605923 MORTGAGE EDITION 2

 2/9/2010
 AF734655
 DISCHARGE OF MORTGAGE

 2/9/2010
 AF734656
 TRANSFER

 2/9/2010
 AF734657
 MORTGAGE
 EDITION 3

 11/3/2015
 AJ322482
 DISCHARGE OF MORTGAGE

 11/3/2015
 AJ322483
 TRANSFER
 EDITION 4

17/7/2020 AQ246036 CAVEAT

*** END OF SEARCH ***

DI-ES8320

PRINTED ON 25/8/2021

© Office of the Registrar-General 2021

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

25/08/2021 12:47 PM

© Office of the Registrar-General 2021

1:R41 Offic	Poro: DL pe of the Regination of the Regination of the Regination of the Register is main the	AJ322483 /Rev:16-Mar-2015 /N Istrar-General /Src:DIRECTINF Re Section 31B of the Real Property Act 1900 the establishment and maintenance ade available to any person for search up	SW LRS /Pgs:ALL /Prt O /Ref:DI-ES8320 RANSFER New South Wales al Property Act 1900 O (RP Act) authorises the Rej of the Real Property Act con payment of a fee, if any.	AJ322483C Register. Section 96B RP Act require	s tha
	STAMP DUTY	Office of State Revenue use only		Office of State Revenue NSW Treasury Client No: 109163208 3490 Duty: 1654 56,440 Trans No: 7880462-20 Asst debits:	2
(A)	TORRENS TITLE	A1/372287			-
(B)	LODGED BY	DocumentName, Address or DX, TCollectionSYDNEY LEGBox392 CLLP : 128005	Felephone, and Customer Ac GAL AGE is i 5 Y	count Number if any	5 S
		Reference:	NE 17378		V
(C)	IRANSFEROR	Alex HARB			
(D) (E)	CONSIDERATION ESTATE	The transferor acknowledges receipt of t the abovementioned land transfers to the	he consideration of \$ 1,30 he transferce an estate	0,000.00 and as in fee simple	tegar
<u>(</u> F)	SHARE TRANSFERRED	Whole			
(G)		Encumbrances (if applicable):			
(H)	IRANSFEREE	A.C.N 155 450 865 Pty Ltd	(ACN 155 450 865)		
(1)		TENANCY:]	
(1)	DATE 20 th I certify I am and signed this dealin [See note* below	September 2013 eligible witness and that the transferor ig in my presence.	Certified cor 1900 by the t	rect for the purposes of the Real Property ransferor.	' Act
	Signature of with		Signature of	transferor:	
	Address of withe	ss: George Bough	haleb	<u> </u>	
		3 Kresser Gro	ove Canterbur	y	
	Certified correct and executed on authorised persor pursuant to the au Company: ACM Authority:	for the purposes of the Real Property Ac behalf of the company named below by n(s) whose signature(s) appear(s) below uthority specified. J ISS 450 865 PT4 LTI) ATF	ct 1900 the S-9 CRD-1 Jon STREA	T UNIT TENST	Ŀ.
	Signature of auth	orised person:	Signature of a	uthorised person:	Ľ
	Name of authoris Office held:	Director	Name of author Office held:	DIRGETOR	E
(K)	The transfer	ee's Agent certifies that the formation of the second seco	he eNOS data relevant to th You Rouse	is dealing has been submitted and stored Signature:	ur

* s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation. ALL HANDWRITING MUST BE IN BLOCK CAPITALS Page 1 of 1303

25/08/2021 12:50 PM

© Office of the Registrar-General 2021

Req:R419011 /Doc:DL © Office of the Regi	AF734656 strar-Gen	/Rev:08-Sep-2010 /NSW LRS /Pgs:AL eral /Src:DIRECTINFO /Ref:DI-ES83	L /Prt:25-Aug-2021 12:47 /Se 20	eq:1 of 1
Form: 01T Licence: 01-05-025 Licensee: LEAP Legal Firm name: Simon Diab PRIVACY NOTE: Sec required by this form Register is made ava STAMP DUTY	Software Pty & Associates tion 31B of the for the estab- ilable to any Office of S	Limited New South Wales Real Property Act 1900 he Real Property Act 1900 (RP Act) authorises to lishment and maintenance of the Real Property person for search upon payment of a fee, if any itate Revenue use only	AF734656 Office of State Revenue Client No: 112076712 Duty: Chempt Trans No: 595 Asst destails: 52-TH on Agneter Sole Of Land TS on Agneter	armation wires that the 3104 8722 with for set of los
(A) TORRENS TITLE	If appropri A1/372287	ate, specify the part transferred		
(B) LODGED BY	Delivery Box 45A	Name, Address or DX and Telephone	Level 5, Building C 1 Homebush Bay Drive Rhodes NSW 2138	CODES T TW
		Reference (optional): 10 ID 3402	OFFICE OF STATE REVENUE (N.S.W. TREASURY)	(Sheriff)
(C) TRANSFEROR	Abdur RA	HMAN and Halena BEGUM	ALTERATION NOTED	•
 (D) CONSIDERATION (E) ESTATE (F) SHARE TRANSFERRED 	The transf the land sp	eror acknowledges receipt of the consideration becified above transfers to the transferee an e	n of \$5 \$ 0,000.00 and as regards estate in fee simple.	
(G)	Encumbrand	ces (if applicable):		
(H) TRANSFEREE	Alex HAR	B		
(1)	TENANCY			

DATE 16.08.2010.

(J) I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Signature of witness:

Name of witness: Rita Nathle Address of witness: Suite 39 Level 2/ 22 George Street North Streethfield NSW 2187.

Certified correct for the purposes of the Real Property Act 1900 by the transferor.

Signature of transferor: lena liegum.

Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.

٢ Signature Signatory's name: na Mehaĭer Solicitor for the Transferee Signatory's capacity:

25/08/2021 12:52 PM

© Office of the Registrar-General 2021

Req:R419018 /Doc:DL © Office of the Regi	AB605922 /Rev:08-Jul-2005 /NSW LRS strar-General /Src:DIRECTINFO /Ref	5 /Pgs:ALL /Prt:25-Aug-2021 12:48 E:DI-ES8320	/Seq:1 of 1
Form: 01T Licence: 01-05-02		SFER	
Licens 🔭 P & A C	onveyancing U New Sout	h Wales AB6059	922B
PRIVACY NOTE: Se required by this for	ection 31B of the Real Property Act 1900 (RP Act) n for the establishment and maintenance of the l	authorises the Registrar General to collect the Real Property Act Register: Section 968 RP Act	information requires that the
Register is made av STAMP DUTY	Office of State Region weaking only 16() Chant No: 1390664 214 VENDOR DUTY ENDOR SED Trans No: 2751833		4672.
(A) TORRENS TITLE	If appropriate, specify the part transferred A1/372287		
(B) LODGED BY	Delivery Name, Address or DX and Tele Box Reference (optional):	ephone Macgillivrays 847L LLPN.123611F	CODES T TW (Sheriff)
(C) TRANSPEROR	Knapton & Co Pty Limited AcN 000 336 425		
 (D) CONFIDERATION (E) ESTATE (F) SHARE TRANSFERRED (G) 	The transferor acknowledges receipt of the co The land specified above transfers to the tran Encumbrances (if applicable):	onsideration of \$440,000.00 and as regards nsferee an estate in fee simple.	
(H) TRANSFEREE	Abdur Rahman and Halena Begum	,	
(I)	TENANCY: Joint Tenants	·······	
DATE	24-6-05		
(J) I certify that the j I am personally a otherwise satisfie Executed (Si gnature of with whose sign Name of withe Corporation	person(s) signing opposite, with whom requainted or as to whose identity Lam ad, signed this instrument in my presence. By Knapton + Co Pty Ltd ress: by the authonized person sature appears below: Sunder Section 127 of the sons Act, 2001.	Certified correct for the purposes of the Property Act 1900 by the transferor. Signature of transferor: Certified correct for the purposes of the 1900 by the person whose signature app Signature: Deter Ishak	Real Knapton tor Secretary Real Property Act ears below.

Page 1 of <u>1</u> number additional pages sequentially

Transferee

R

25/08/2021 12:54 PM

© Office of the Registrar-General 2021

Reg:R419023 /Doc:DL © Office of the Reginner Form: 01'1' Licence: 01-05-02 Licensee: George S	9334923 /Rev:03-Feb-2003 /NSW LRS /Pgs:ALL /Prt:25 strar-General /Src:DIRECTINFO /Ref:DI-ES8320 5 had & Co. New South Wales Real Property Act 1900	-Aug-2021 12:48 /Seq:1 of 1
STAMP DUTY	PRIVACY NOTE: this information is legally required and will. Office of State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE State Revenue use pail CE OF STATE REVENUE State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE Office of State Revenue use pail CE OF STATE REVENUE Other Revenue use pail CE OF STATE REVENUE State Revenue Use pail CE OF STATE REVENUE Other Revenue Use pail CE OF STATE REVENUE State Revenue Use pail CE OF State Revenue Use pail CE OF State Reven	9334923H (N.S.W. TREA P No. 802 ATURE
(A) TORRENS TITLE	If appropriate, specify the part transferred Folio Identifier A1/372287	
(B) LODGED BY	Delivery Box George thad to. Reference (optional): H. Knapton	CODES T TW (Sheriff)
(C) TRANSFEROR	The Presbyterian Church (New South Wales) Property Trust ABN 82 847 231 828	(
 (D) CONSIDERATION (E) ESTATE (F) SHARE TRANSFERRED (G) (H) TRANSFEREE 	The transferor acknowledges receipt of the consideration of \$400,00 The land specified above transfers to the transferee an estate in fee Encumbrances (if applicable) 1. 2. Knapton & Co Pty. Limited A.C.N. 000 336 425	00.00 and as regards simple. 3.
(I)	TENANCY:	
DATE(J) I certify that the or as to whose presence.Signature of with Name of witness Address of witness	28(103 person(s) signing opposite, with whom I am personally acquainted identity I am otherwise satisfied, signed this instrument in my ness: PERM JOHN GRAMM is: 532 BLAXLAND ROMD ATSTWORD NEW 2122	Certified correct for the purposes of the Real Property Act 1900 by the person(s) named below who signed this instrument pursuant to the bowed of attorney specified. Signature of attorney: Attorney's name: Wayne David Richards Signing on behalf of: The Presbyterian Church (New South Wales) Property Trust Power of attorney-Book: 4342 -No.: 644 Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.
		Signature: Signatory's name: George Shad Signatory's capacity: Solicitor for Transferee

Page 1 of <u>1</u> number additional pages sequentially

APPENDIX E

NSW EPA RECORDS

Search results

Your search for:Suburb: LAKEMBA

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence lise or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the <u>planning</u> process.

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the Environmental Planning and Assessment Act</u>.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. <u>POEO public register</u>

For business and industry **^**

23 August 2021

For local government **^**

Find us on

Contact us

131 555 (tel:131555)

Online (https://yoursay.epa.nsw.gov.au/epa-website-feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

Refine Search
Search TIP

Search Again

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

.. more search tips

Search results

Your search for: General Search with the following criteria

Suburb - lakemba

returned 2 results

Export to e	<u>excel</u>	1 of 1 Pages			Search Again
Number	Name	Location	Туре	Status	Issued date
<u>11585</u>	ASTOR BASE METALS PTY LTD	512 Punchbowl Road, LAKEMBA, NSW 2195	POEO licence	No longer ir force	20 Dec 2001
<u>1038415</u>	ASTOR BASE METALS PTY LTD	512 Punchbowl Road, LAKEMBA, NSW 2195	s.58 Licence Variation	Issued	28 Jun 2004
					23 August 2021

For business and industry ^

For local government ^

Contact us

131 555 (tel:131555)

Online (https://yoursay.epa.nsw.gov.au/epa-website-feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

Find us on

APPENDIX F

REGULATORY CRITERIA

Site Criteria Based on:

NEPM 2013 - Schedule B1

Guideline on Investigation Level For Soil and Groundwater

Health-based investigation levels (mg/kg)										
Chemical	Residential ¹ A	Residential¹ B	Recreational ¹ C	Commercial/ industrial ¹ D						
	Metals and Inorganics									
Arsenic ²	100	500	300	3 000						
Beryllium	60	90	90	500						
Boron	4500	40 000	20 000	300 000						
Cadmium	20	150	90	900						
Chromium (VI)	100	500	300	3600						
Cobalt	100	600	300	4000						
Copper	6000	30 000	17 000	240 000						
Lead ³	300	1200	600	1 500						
Manganese	3800	14 000	19 000	60 000						
Mercury										
(inorganic) ⁵	40	120	80	730						
Methyl mercury ⁴	10	30	13	180						
Nickel	400	1200	1200	6 000						
Selenium	200	1400	700	10 000						
Zinc	7400	60 000	30 000	400 000						
Cyanide (free)	250	300	240	1 500						
	Polycyclic Aromat	ic Hydrocarbons (PAHs)							
Carcinogenic										
PAHs										
(as BaP TEQ) ^o	3	4	3	40						
Total PAHs ⁷	300	400	300	4000						
	ŀ	Phenols								
Phenol	3000	45 000	40 000	240 000						
Pentachlorophenol	100	130	120	660						
Cresols	400	4 700	4 000	25 000						
	Organoch	lorine Pesticides								
DDT+DDE+DDD	240	600	400	3600						
Aldrin and dieldrin	6	10	10	45						
Chlordane	50	90	70	530						
Endosulfan	270	400	340	2000						
Endrin	10	20	20	100						
Heptachlor	6	10	10	50						
HCB	10	15	10	80						
Methoxychlor	300	500	400	2500						
Mirex	10	20	20	100						
Toxaphene	20	30	30	160						
	He	erbicides								
2,4,5-T	600	900	800	5000						
2,4-D	900	1600	1300	9000						

Table 1A(1) Health investigation levels for soil contaminants

	Health-based investigation levels (mg/kg)				
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D	
МСРА	600	900	800	5000	
MCPB	600	900	800	5000	
Mecoprop	600	900	800	5000	
Picloram	4500	6600	5700	35000	
	Othe	r Pesticides			
Atrazine	320	470	400	2500	
Chlorpyrifos	160	340	250	2000	
Bifenthrin	600	840	730	4500	
	Othe	er Organics			
PCBs ⁸	1	1	1	7	
PBDE Flame Retardants					
(Br1–Br9)	1	2	2	10	

Notes:

(1) Generic land uses are described in detail in Schedule B7 Section 3

HIL A – Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

HIL B – Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

HIL C – Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate.

HIL D - Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.

- (2) Arsenic: HIL assumes 70% oral bioavailability. Site-specific bioavailability may be important and should be considered where appropriate (refer Schedule B7).
- (3) Lead: HIL is based on blood lead models (IEUBK for HILs A, B and C and adult lead model for HIL D where 50% oral bioavailability has been considered. Site-specific bioavailability may be important and should be considered where appropriate.
- (4) Methyl mercury: assessment of methyl mercury should only occur where there is evidence of its potential source. It may be associated with inorganic mercury and anaerobic microorganism activity in aquatic environments. In addition the reliability and quality of sampling/analysis should be considered.
- (5) Elemental mercury: HIL does not address elemental mercury. A site-specific assessment should be considered if elemental mercury is present, or suspected to be present,
- (6) Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products.

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01

Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

Where the B(a)P occurs in bitumen fragments it is relatively immobile and does not represent a significant health risk.

- (7) Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.
- (8) PCBs: HIL relates to non-dioxin-like PCBs only. Where a PCB source is known, or suspected, to be present at a site, a site-specific assessment of exposure to all PCBs (including dioxin-like PCBs) should be undertaken.

	Interim soil vapour HIL (mg/m ³)						
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial / Industrial ¹ D			
TCE	0.02	0.02	0.4	0.08			
1,1,1-TCA	60	60	1200	230			
PCE	2	2	40	8			
cis-1,2-							
dichloroethene	0.08	0.08	2	0.3			
Vinyl chloride	0.03	0.03	0.5	0.1			

Table 1A(2) Interim soil vapour health investigation levels for volatile organic chlorinated compounds Interim soil vapour health investigation levels for volatile organic

Notes:

- 1. Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7, though secondary school buildings should be assessed using residential 'A/B' for vapour intrusion purposes.
- 2. Interim HILs for VOCCs are conservative soil vapour concentrations that can be adopted for the purpose of screening sites where further investigation is required on a site-specific basis. They are based on the potential for vapour intrusion using an indoor air-to-soil vapour attenuation factor of 0.1 and an outdoor air-to-soil vapour attenuation factor of 0.05.
- 3. Application of the interim HILs is based on a measurement of shallow (to 1 m depth) soil vapour (or deeper where the values are to be applied to a future building with a basement) or sub-slab soil vapour.
- 4. The applicability of the interim HILs needs to be further considered when used for other building types such as homes with a crawl-space and no slab, which may require site-specific assessment.
- 5. Use of the interim HILs requires comparison with data that has been collected using appropriate methods and meets appropriate data quality requirements.
- 6. Oral and dermal exposure should be considered on a site-specific basis where direct contact exposure is likely to occur.

	HSL A & HSL B Low – high density residential				HSL C recreational / open space				Con	HS			
CHEMICAL	0 m to	1 m to	2 m to		0 m to	1 m to	2 m to		0 m to	1 m to	2 m to		Soil saturation concentrati on (Csat)
	<1 m	<2 m	<4m	4 m+	<1 m	<2 m	<4 m	4 m+	<1 m	<2 m	<4 m	4 m+	
SAND													
Toluene	160	220	310	540	NL	NL	NL	NL	NL	NL	NL	NL	560
Ethylbenzene	55	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	64
Xylenes	40	60	95	170	NL	NL	NL	NL	230	NL	NL	NL	300
Naphthalene	3	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	9
Benzene	0.5	0.5	0.5	0.5	NL	NL	NL	NL	3	3	3	3	360
F1 ⁽⁹⁾	45	70	110	200	NL	NL	NL	NL	260	370	630	NL	950
F2 ⁽¹⁰⁾	110	240	440	NL	NL	NL	NL	NL	NL	NL	NL	NL	560
SILT													
Toluene	390	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	640
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	69

Table 1A(3) Soil HSLs for vapour intrusion (mg/kg)

	HSL A & HSL B Low – high density residential				HSL C recreational / open space				HSL D Commercial / Industrial				
Xylenes	95	210	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	4	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.6	0.7	1	2	NL	NL	NL	NL	4	4	6	10	440
F1 ⁽⁹⁾	40	65	100	190	NL	NL	NL	NL	250	360	590	NL	910
F2 ⁽¹⁰⁾	230	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	570
	CLAY												
Toluene	480	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	630
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	68
Xylenes	110	310	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	330
Naphthalene	5	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	10
Benzene	0.7	1	2	3	NL	NL	NL	NL	4	6	9	20	430
F1 ⁽⁹⁾	50	90	150	290	NL	NL	NL	NL	310	480	NL	NL	850
F2(10)	280	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	560

Notes:

(1) Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,

- (2) The key limitations of the HSLs should be referred to prior to application and are presented in Friebel and Nadebaum (2011b and 2011d).
- (3) Detailed assumptions in the derivation of the HSLs and information on how to apply the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).

- (4) Soil HSLs for vapour inhalation incorporate an adjustment factor of 10 applied to the vapour phase partitioning to reflect the differences observed between theoretical estimates of soil vapour partitioning and field measurements. Refer Friebel & Nadebaum (2011a) for further information.
- (5) The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- (6) The HSLs for TPH C_6 - C_{10} in sandy soil are based on a finite source that depletes in less than seven years, and therefore consideration has been given to use of sub-chronic toxicity values. The $>C_8$ - C_{10} aliphatic toxicity has been adjusted to represent sub-chronic exposure, resulting in higher HSLs than if based on chronic toxicity. For further information refer to Section 8.2 and Appendix J in Friebel and Nadebaum (2011a).
- (7) The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.
- (8) For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- (9) To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- (10) To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

	HS Low	L A & HS - high de residentia	L B nsity l	recreati	HSL C onal / ope	n space	Comm					
CHEMICAL	2 m to	4 m to	-	2 m to	4 m to		2 m to	4 m to		Solubility limit		
	<4 m	<8 m	8 m+	<4 m	<8 m	8 m+	<4 m	<8 m	8 m+			
SAND												
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61		
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9		
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21		
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17		
Benzene	0.8	0.8	0.9	NL	NL	NL	5	5	5	59		
F1(7)	1	1	1	NL	NL	NL	6	6	7	9.0		
F2 ⁽⁸⁾	1	1	1	NL	NL	NL	NL	NL	NL	3.0		
SILT												
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61		
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9		
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21		
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17		

Table 1A(4) Groundwater HSLs for vapour intrusion (mg/L)

	HSL A & HSL B Low – high density residential			HSL C recreational / open space			HSL D Commercial / industrial			
Benzene	4	5	5	NL	NL	NL	30	30	30	59
F1 ⁽⁷⁾	6	6	6	NL	NL	NL	NL	NL	NL	9.0
F2 ⁽⁸⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0
CLAY										
Toluene	NL	NL	NL	NL	NL	NL	NL	NL	NL	61
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.9
Xylenes	NL	NL	NL	NL	NL	NL	NL	NL	NL	21
Naphthalene	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.17
Benzene	5	5	5	NL	NL	NL	30	30	35	59
F1 ⁽⁷⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	9.0
F2 ⁽⁸⁾	NL	NL	NL	NL	NL	NL	NL	NL	NL	3.0

Notes:

(1) Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,

(2) The key limitations of the HSLs are presented in Friebel and Nadebaum (2011d) and should be referred to prior to application.

(3) Detailed assumptions in the derivation of the HSLs and information on the application of the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).

(4) The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

(5) The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly, the maximum length of the shorter side of the concrete slab

and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.

- (6) For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- (7) To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- (8) To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

	HSL A & HSL B				HSL C			HSL D							
	L	ow – hig	h densit	y residen	tial	recreational / open space			2	Commercial / Industrial					
CHEMICAL	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m to <8 m	8 m+
SAND															
Toluene	1300	3800	7300	15 000	29 000	NL	NL	NL	NL	NL	4800	16 000	39 000	84 000	NL
Ethylbenzene	330	1100	2200	4300	8700	NL	NL	NL	NL	NL	1300	4600	11 000	25 000	53 000
Xylenes	220	750	1500	3000	6100	NL	NL	NL	NL	NL	840	3,200	8000	18 000	37 000
Naphthalene	0.8	3	6	10	25	410	NL	NL	NL	NL	3	15	35	75	150
Benzene	1	3	6	10	20	360	2400	4700	9500	19 000	4	10	30	65	130
F1 ⁽⁸⁾	180	640	1,300	2600	5300	86 000	NL	NL	NL	NL	680	2800	7000	15 000	32 000
F2 ⁽⁹⁾	130	560	1200	2400	4800	NL	NL	NL	NL	NL	500	2400	NL	NL	NL
							SILT								
Toluene	1400	14 000	32 000	69 000	140 000	NL	NL	NL	NL	NL	5700	63 000	NL	NL	NL
Ethylbenzene	380	4200	9700	21 000	43 000	NL	NL	NL	NL	NL	1500	19 000	54 000	NL	NL
Xylenes	260	2900	6800	15 000	30 000	NL	NL	NL	NL	NL	1000	13 000	38 000	NL	NL
Naphthalene	0.9	10	25	60	120	NL	NL	NL	NL	NL	4	50	150	350	750
Benzene	1	10	25	55	110	1800	12 000	24 000	48 000	97 000	4	50	140	320	670

Table 1A(5) Soil vapour HSLs for vapour intrusion (mg/m³)

	HSL A & HSL B			HSL C				HSL D Commercial / Industrial							
	L	.0w - mg	uensn	y residen	1141		Tecleati	Ullar / Ul	en space	e		Comm	ercial / I	liuusiilai	
F1 ⁽⁸⁾	210	2600	6000	13 000	26 000	NL	NL	NL	NL	NL	850	11 000	33 000	77 000	160 000
F2 ⁽⁹⁾	160	2300	5400	NL	NL	NL	NL	NL	NL	NL	670	NL	NL	NL	NL
CLAY															
Toluene	1600	23 000	53 000	110 000	NL	NL	NL	NL	NL	NL	6500	100 000	NL	NL	NL
Ethylbenzene	420	6800	16 000	35 000	NL	NL	NL	NL	NL	NL	1800	31 000	NL	NL	NL
Xylenes	280	4800	11 000	24 000	50 000	NL	NL	NL	NL	NL	1200	21 000	NL	NL	NL
Naphthalene	1	20	45	95	200	NL	NL	NL	NL	NL	4	85	240	560	1200
Benzene	1	15	40	90	180	3000	20 000	40 000	81 000	160 000	5	80	230	530	1100
F1(8)	230	4200	9900	21 000	44 000	NL	NL	NL	NL	NL	1000	19 000	55 000	130 000	270 000
F2 ⁽⁹⁾	180	3,800	NL	NL	NL	NL	NL	NL	NL	NL	800	NL	NL	NL	NL

1. Land use settings are equivalent to those described in Table 1A(1) Footnote 1 and Schedule B7. HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used,

2. The key limitations of the HSLs should be referred to prior to application and are presented in Friebel and Nadebaum (2011b and 2011d).

3. Detailed assumptions in the derivation of the HSLs and information on how to apply the HSLs are presented in Friebel and Nadebaum (2011a and 2011b).

4. The maximum possible soil vapour concentrations have been calculated based on vapour pressures of the pure chemicals. Where soil vapour HSLs exceed these values a soil-specific source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

5. Soil vapour HSLs should be compared with measurements taken as laterally close as possible to the soil or groundwater sources of vapour (i.e. within or above vapour sources). Consideration is required of where the sample is taken, the current condition of the site and the likely future condition of the site. Shallow gas measurements in open space (less than 1 m below ground surface) may be subject to influences of weather conditions and moisture.

6. The figures in the above table may be multiplied by a factor to account for biodegradation of vapour. A factor of 10 may apply for source depths from 2 m to <4 m or a factor of 100 for source depths of 4 m and deeper. To apply the attenuation factor for vapour degradation, a number of conditions must be satisfied. Firstly, the maximum length of the shorter side of the concrete slab and surrounding pavement cannot exceed 15 m, as this would prevent oxygen penetrating to the centre of the slab. Secondly, measurement of oxygen in the subsurface is required to determine the potential for biodegradation. Oxygen must be confirmed to be present at >5% to use these factors.

12

- 7. For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 8. To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.
- 9. To obtain F2 subtract naphthalene from the $>C_{10}$ - C_{16} fraction.

© Aargus Pty Ltd

	Zn added contaminant limits (ACL, mg added contaminant/kg)							
	211 00000	Areas of	ecological sig	nificance				
pH^a			CEC^{b} (c	mol _c /kg)				
	5	10	20	30	40	60		
4.0	15	20	20	20	20	20		
4.5	20	25	25	25	25	25		
5.0	30	40	40	40	40	40		
5.5	40	60	60	60	60	60		
6.0	50	90	90	90	90	90		
6.5	50	90	130	130	130	130		
7.0	50	90	150	190	190	190		
7.5	50	90	150	210	260	280		
Urban residential/public open space ¹								
pH^{a}	$CEC^{b} (cmol_{c}/kg)$							
	5	10	20	30	40	60		
4.0	70	85	85	85	85	85		
4.5	100	120	120	120	120	120		
5.0	130	180	180	180	180	180		
5.5	180	270	270	270	270	270		
6.0	230	400	400	400	400	400		
6.5	230	400	590	590	590	590		
7.0	230	400	700	880	880	880		
7.5	230	400	700	960	1200	1300		
	-	Com	mercial/indus	trial				
pH^a			CEC^{b} (c	mol _c /kg)	1	1		
	5	10	20	30	40	60		
4.0	110	130	130	130	130	130		
4.5	150	190	190	190	190	190		
5.0	210	290	290	290	290	290		
5.5	280	420	420	420	420	420		
6.0	360	620	620	620	620	620		
6.5	360	620	920	920	920	920		
7.0	360	620	1100	1400	1400	1400		
7.5	360	620	1100	1500	1900	2000		

Table 1B(1) Soil-specific added contaminant limits for aged zinc in soil

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. The EIL is calculated from summing the ACL and the ABC.

a = pH measured using the CaCl₂ method (Rayment & Higginson 1992).

b = CEC measured using the silver thiourea method (Chabra et al. 1972).

			· · · · · · · · · · · · · · · · · · ·		-		
	Cu added conta	minant limits (A	CL, mg added c	contaminant/kg)			
Areas of ecological significance							
$CEC (cmol_c/kg)^a based$							
5	10	20	30	40	60		
30	65	70	70	75	80		
<i>pH^bbased</i>							
4.5	5.5	6	6.5	7.5	8.0		
20	45	65	90	190	270		
Urban residential/public open space ¹							
$CEC \ (cmol_c/kg)^a \ based$							
5	10	20	30	40	60		
95	190	210	220	220	230		
	·	pH ^b b	pased				
4.5	5.5	6	6.5	7.5	8.0		
60	130	190	280	560	800		
		Commercia	l/industrial				
		CEC (cmol	c/kg) ^a based				
5	10	20	30	40	60		
140	280	300	320	330	340		
		pH ^b b	pased				
4.5	5.5	6	6.5	7.5	8.0		
85	190	280	400	830	1200		

$T_{-1} = 1 - 1 D(0)$	Coll and office added containing of limits for and comparing on the
	Soll-specific added confaminant limits for aged copper in solls
I W M M M M M M M M M M M M M M M M M M	son specific added containing mintes for aged copper in some

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. The lower of the CEC or the pH-based ACLs for the land use and soil conditions is the ACL to be used.

3. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

4. The EIL is calculated from summing the ACL and the ABC.

a = CEC measured using the silver thiourea method (Chabra et al. 1972).

b = pH measured using the CaCl₂ method (Rayment & Higginson 1992).

© Aargus Pty Ltd

 Table 1B(3)
 Soil-specific added contaminant limits for aged chromium III and nickel in soil

CHEMICAL	Clay content	Added contamin	ant limits (mg added for various land u	limits (mg added contaminant/kg) for various land uses		
	(% clay)	Areas of ecological significance	Urban residential and public open space	Commercial and industrial		
	1	60	190	310		
Chromium	2.5	80	250	420		
III	5	100	320	530		
	≥10	130	400	660		
	CECª (cmol₀/kg)	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial		
	CECª (cmol√kg) 5	Areas of ecological significance 5	Urban residential and public open space ¹ 30	Commercial and industrial 55		
Nickel	CEC ^a (cmol√kg) 5 10	Areas of ecological significance 5 30	Urban residential and public open space ¹ 30 170	Commercial and industrial 55 290		
Nickel	CEC ^a (cmol ₀ /kg) 5 10 20	Areas of ecological significance 5 30 45	Urban residential and public open space ¹ 30 170 270	Commercial and industrial 55 290 460		
Nickel	CEC ^a (cmol ₀ /kg) 5 10 20 30	Areas of ecological significance 5 30 45 60	Urban residential and public open space ¹ 30 170 270 350	Commercial and industrial 55 290 460 600		
Nickel	CEC ^a (cmol _o /kg) 5 10 20 30 40	Areas of ecological significance 5 30 45 60 70	Urban residential and public open space ¹ 30 170 270 350 420	Commercial and industrial 55 290 460 600 730		

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values apply to contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. The EIL is calculated from summing the ACL and the ABC.

a = CEC measured using the silver thiourea method (Chabra et al. 1972).

Table 1B(4)Generic added contaminant limits for lead in soils irrespective of theirphysicochemical properties

	Pb added contaminant limit (ACL, mg added contaminant/kg) for various land uses					
CHEMICAL	Areas of ecological significance	Urban residential and public open space ¹	Commercial and industrial			
Lead	470	1100	1800			

Notes:

1. Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

2. Aged values are applicable to lead contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.

3. The EIL is calculated from summing the ACL and the ABC.

Table 1B(5)Generic EILs for aged As, fresh DDT and fresh naphthalene in soilsirrespective of their physicochemical properties

	Ecological Investigation L	evels (mg total contaminant/k	g)
CHEMICAL	Areas of ecological	Urban residential and	Commercial and industrial
	significance	public open space ¹	
Arsenic ²	40	100	160
DDT ³	3	180	640
Naphthalene ³	10	170	370

Notes:

- 2. Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.
- 3. Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.
- 4. Insufficient data was available to calculate ACLs for As, DDT and naphthalene. The EIL should be taken directly from Table 1B(5).

^{1.} Urban residential/public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

CHEMICAL	Soil	ESLs (mg/kg dry soil)						
	texture	Areas of ecological significance	Urban residential and public open space	Commercial and industrial				
F1 C ₆ -C ₁₀		125*	180*	215*				
F2 >C ₁₀ -C ₁₆	Coarse/ Fine	25*	120*	170*				
F3 >C ₁₆ -C ₃₄	Coarse	-	300	1700				
	Fine	-	1300	2500				
F4 >C ₃₄ -C ₄₀	Coarse	-	2800	3300				
	Fine	-	5600	6600				
Benzene	Coarse	8	50	75				
	Fine	8	65	95				
Toluene	Coarse	10	85	135				
	Fine	65	105	135				
Ethylbenzene	Coarse	1.5	70	165				
	Fine	40	125	185				
Xylenes	Coarse	10	105	180				
	Fine	1.6	45	95				
Benzo(a)pyrene	Coarse	0.7	0.7	1.4				
	Fine	0.7	0.7	1.4				

 Table 1B(6)
 ESLs for TPH fractions F1 - F4, BTEX and benzo(a)pyrene in soil

Notes:

(1) ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

(2) '-' indicates that insufficient data was available to derive a value.

(3) To obtain F1, subtract the sum of BTEX concentrations from C_6 - C_{10} fraction.

TPH fraction	Soil texture	Management Limits ¹ (mg/kg dry soil)			
		Residential, parkland and public open space	Commercial and industrial		
F1 ² C ₆ - C ₁₀	Coarse	700	700		
	Fine	800	800		
$F2^2 > C_{10}-C_{16}$	Coarse	1000	1000		
	Fine	1000	1000		
F3 >C ₁₆ -C ₃₄	Coarse	2500	3500		
	Fine	3500	5000		
F4 >C ₃₄ -C ₄₀	Coarse	10 000	10 000		
	Fine	10 000	10 000		

 Table 1 B(7)
 Management Limits for TPH fractions F1–F4 in soil

¹ Management limits are applied after consideration of relevant ESLs and HSLs

 2 Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

Table 4

SOIL HEALTH SCREENING LEVELS FOR DIRE	CT CONTACT (mg/kg) ^(a,b)
---------------------------------------	-------------------------------------

Chemical	HSL-A Residential (Low Density)	HSL-B Residential (High Density)	HSL-C Recreational Open Space	HSL-D Commercial / Industrial				
Toluene	14,000	21,000	18,000	99,000				
Ethylbenzene	4,500	5,900	5,300	27,000				
Xylenes	12,000	17,000	15,000	81,000				
Naphthalene	1,400	2,200	1,900 11,000					
Benzene	100	140	120	430				
C6-C10	4,400	5,600	5,100	26,000				
>C10-C16	3,300	4,200	3,800	20,000				
>C16-C34	4,500	5,800	5,300	27,000				
>C34-C40	6,300	8,100	7,400	38,000				

Note:

(a) Derived assumptions used in the derivation of the HSLs and information on how to apply the HSLs are presented in:

- Frebel E & Nadebaum P 2011. Health screening levels for petroleum hydrocarbons in soil and groundwater Part 1: Technical development document, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia
- Frebel E & Nadebaum P 2011. Health screening levels for petroleum hydrocarbons in soil and groundwater Part 2: Application document, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia
- (b) The key limitations in the development of the HSLs should be referred to prior to application. These are presented in the text of the summary document and the HSL application checklist in Appendix A of the Application Document (Frebel & Nadebaum 2011 Part 2)

Table 7: Health screening levels for asbestos contamination in soil

Earm of Ashestos	Health Screening Level (w/w)									
FOILI OF ASDESIOS	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D ⁴						
Bonded ACM	0.01%	0.04%	0.02%	0.05%						
FA & AF	0.0010/									
(friable asbestos & fines)	0.001%									
All forms of asbestos	No visible asbestos for surface soil									

Notes:

- 1. Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.
- 2. Residential B with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.
- 3. Residential C includes public open space such as parks, playgrounds, playing fields (e.g. Ovals), secondary schools and unpaved footpaths.
- 4. Commercial/Industrial D includes premises such as shops, offices, factories and industrial sites.

	Groundwater Investigation Levels									
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B							
	(µg/L)	(µg/L)	(mg/L)							
Metal	ls and Metalloids	5								
Aluminium, Al pH>6.5	55	-	-							
Antimony	-	-	0.003							
Arsenic	24 as As(III) 13 as As(V)	-	0.01							
Barium	-	-	2							
Beryllium	-	-	0.06							
Boron	370 [°]	-	4							
Cadmium H	0.2	0.7 ^D	0.002							
Chromium, Cr (III) H	-	27	-							
Chromium, Cr (VI)	1 ^C	4.4	0.05							
Cobalt	-	1	-							
Copper H	1.4	1.3	2							
Iron, (Total)	-	-	-							
Lead H	3.4	4.4	0.01							
Manganese	1900 ^C	-	0.5							
Mercury (Total)	0.06 ^D	0.1 ^D	0.001							
Molybdenum	-	-	0.05							
Nickel H	11	7	0.02							
Selenium (Total)	5 ^D	-	0.01							
Silver	0.05	1.4	0.1							
Tributyl tin (as Sn)	-	0.006 ^C	-							
Tributyl tin oxide	-	-	0.001							
Uranium	-	-	0.017							
Vanadium	-	100	-							
Zinc H	8 ^C	15 ^C	-							
Non-n	netallic Inorganio	CS								
Ammonia ^E (as NH ₃ -N at pH 8)	900 ^C	910	-							
Bromate	-	-	0.02							
Chloride	-	-	-							
Cyanide (as un-ionised Cn)	7	4	0.08							
Fluoride	-	-	1.5							

Table 1C Groundwater Investigation Levels (GILs)

	Groundwater Investigation Levels								
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B						
	(µg/L)	(µg/L)	(mg/L)						
Hydrogen sulphide (un-ionised H ₂ S measured as S)	1	-	-						
Iodide	-	-	0.5						
Nitrate (as NO ₃)	refer to guideline	refer to guideline	50						
Nitrite (as NO ₂)	refer to guideline	refer to guideline	3						
Nitrogen	refer to guideline	refer to guideline	-						
Phosphorus	refer to guideline	refer to guideline	-						
Sulphate (as SO ₄)	-	-	500						
Organic alo	chohols/other org	ganics							
Ethanol	1400	-	-						
Ethylenediamine tetra-acetic acid (EDTA)	-	-	0.25						
Formaldehyde	-	-	0.5						
Nitrilotriacetic acid	-	-	0.2						
	Anilines								
Aniline	8	-	-						
2,4-Dichloroaniline	7	-	-						
3,4-Dichloroaniline	3	150	-						
Chlo	rinated Alkanes								
Dichloromethane	-	-	0.004						
Trihalomethanes (total)	-	-	0.25						
Tetrachloromethane (carbon tetrachloride)	-	-	0.003						
1,2-Dichloroethane	-	-	0.003						
1,1,2-Trichloroethane	6500	1900	-						
Hexachloroethane	290 ^D	-	-						
Chlo									
Chloroethene (vinyl chloride)	-	-	0.0003						
1,1-Dichloroethene	-	-	0.03						
1,2-Dichoroethene	-	-	0.06						
Tetrachloroethene (PCE) (Perchloroethene)	-	-	0.05						

	Groundwater Investigation Levels										
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B								
	(µg/L)	(µg/L)	(mg/L)								
Chlorinated Benzenes											
Chlorobenzene	-	-	0.3								
1,2- Dichlorobenzene	160	-	1.5								
1,3- Dichlorobenzene	260	-	-								
1,4- Dichlorobenzene	60	-	0.04								
1,2,3- Trichlorobenzene	3 ^D	-	0.03								
1,2,4- Trichlorobenzene	85 ^D	20 ^{D}	for individual or								
1,3,5-Trichlorobenzene	-	-	total trichlorobenzenes								
Polychlorin	ated Biphenyls ((PCBs)									
Aroclor 1242	0.3 ^D	-	-								
Aroclor 1254	0.01 ^D	-	-								
Other Chl	orinated Compo	unds									
Epichlorohydrin	-	-	0.1								
Hexachlorobutadiene	-	-	0.0007								
Monochloramine	-	-	3								
Monocyclic	Aromatic Hydrod	carbons									
Benzene	950	500 ^C	0.001								
Toluene	-	-	0.8								
Ethylbenzene	-	-	0.3								
Xylenes	350 (as o- xylene) 200 (as p- xylene)	-	0.6								
Styrene (Vinyl benzene)	-	-	0.03								
Polycyclic Aron	natic Hydrocarbo	ons (PAHs)									
Naphthalene	16	50 [°]	-								
Benzo[a]pyrene	-	-	0.00001								
	Phenols										
Phenol	320	400	-								
2-Chlorophenol	340 [°]	-	0.3								
4-Chlorophenol	220	-	-								
2,4-Dichlorophenol	120	-	0.2								
2,4,6-Trichlorophenol	3 ^D	-	0.02								
2,3,4,6-Tetrachlorophenol	10 ^D	-	-								
Pentachlorophenol	3.6 ^D	11 ^D	0.01								

	Groundwater Investigation Levels									
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B							
	(µg/L)	(µg/L)	(mg/L)							
2,4-Dinitrophenol	45	-	-							
	Phthalates									
Dimethylphthalate	3700	-	-							
Diethylphthalate	1000	-	-							
Dibutylphthalate	10 ^D	-	-							
Di(2-ethylhexyl) phthalate	-	-	0.01							
	Pesticides									
Acephate	-	-	0.008							
Aldicarb	-	-	0.004							
Aldrin plus Dieldrin	-	-	0.0003							
Ametryn	-	-	0.07							
Amitraz	-	-	0.009							
Amitrole	-	-	0.0009							
Asulam	-	-	0.07							
Atrazine	13	-	0.02							
Azinphos-methyl	-	-	0.03							
Benomyl	-	-	0.09							
Bentazone	-	-	0.4							
Bioresmethrin	-	-	0.1							
Bromacil	-	-	0.4							
Bromoxynil	-	-	0.01							
Captan	-	-	0.4							
Carbaryl	-	-	0.03							
Carbendazim (Thiophanate-methyl)	-	-	0.09							
Carbofuran	0.06	-	0.01							
Carboxin	-	-	0.3							
Carfentrazone-ethyl	-	-	0.1							
Chlorantraniliprole	-	-	6							
Chlordane	0.03 ^D	0.03 ^D -								
Chlorfenvinphos	-	-	0.002							
Chlorothalonil	-	-	0.05							
Chlorpyrifos	0.01 ^D	0.009 ^D	0.01							
Chlorsulfuron	-	-	0.2							
Clopyralid	-	-	2							

	Groundwater Investigation Levels									
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B							
	(µg/L)	(µg/L)	(mg/L)							
Cyfluthrin, Beta-cyfluthrin	-	-	0.05							
Cypermethrin isomers	-	-	0.2							
Cyprodinil	-	-	0.09							
1,3-Dichloropropene	-	-	0.1							
2,2-DPA	-	-	0.5							
2,4-D [2,4-dichlorophenoxy acetic acid]	280	-	0.03							
DDT	0.006 ^D	-	0.009							
Deltramethrin	-	-	0.04							
Diazinon	0.01	-	0.004							
Dicamba	-	-	0.1							
Dichloroprop	-	-	0.1							
Dichlorvos	-	-	0.005							
Dicofol	-	-	0.004							
Diclofop-methyl	-	-	0.005							
Dieldrin plus Aldrin	-	-	0.0003							
Diflubenzuron	-	-	0.07							
Dimethoate	0.15	-	0.007							
Diquat	1.4	-	0.007							
Disulfoton	-	-	0.004							
Diuron	-	-	0.02							
Endosulfan	0.03 ^D	0.005 ^D	0.02							
Endothal	-	-	0.1							
Endrin	0.01 ^D	0.004 ^D	-							
EPTC	-	-	0.3							
Esfenvalerate	-	-	0.03							
Ethion	-	-	0.004							
Ethoprophos	-	-	0.001							
Etridiazole	-	-	0.1							
Fenamiphos	-	-	0.0005							
Fenarimol	-	-	0.04							
Fenitrothion	0.2	-	0.007							
Fenthion	-	-	0.007							
Fenvalerate	-	-	0.06							
Fipronil	-	-	0.0007							

	Groundwater Investigation Levels									
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B							
	(µg/L)	(µg/L)	(mg/L)							
Flamprop-methyl	-	-	0.004							
Fluometuron	-	-	0.07							
Fluproponate	-	-	0.009							
Glyphosate	370	-	1							
Haloxyfop	-	-	0.001							
Heptachlor	0.01 ^D	-	-							
Heptachlor epoxide	-	-	0.0003							
Hexazinone	-	-	0.4							
Imazapyr	-	-	9							
Iprodione	-	-	0.1							
Lindane (y-HCH)	0.2	-	0.01							
Malathion	0.05	-	0.07							
Mancozeb (as ETU, ethylene thiourea)	-	-	0.009							
МСРА	-	-	0.04							
Metaldehyde	-	-	0.02							
Metham (as methylisothiocyanate, MITC)	-	-	0.001							
Methidathion	-	-	0.006							
Methiocarb	-	-	0.007							
Methomyl	3.5		0.02							
Methyl bromide	-	-	0.001							
Metiram (as ETU, ethylene thiourea)	-	-	0.009							
Metolachlor/s-Metolachlor	-	-	0.30							
Metribuzin	-	-	0.07							
Metsulfuron-methyl	-	-	0.04							
Mevinphos	-	-	0.006							
Molinate	3.4	-	0.004							
Napropamide	-	-	0.4							
Nicarbazin	-	-	1							
Norflurazon	-	-	0.05							
Omethoate	-	-	0.001							
Oryzalin	-	-	0.4							
Oxamyl	-	-	0.007							

	Groundwater Investigation Levels									
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B							
	(µg/L)	(µg/L)	(mg/L)							
Paraquat	-	-	0.02							
Parathion	0.004 ^C	-	0.02							
Parathion methyl	-	-	0.0007							
Pebulate	-	-	0.03							
Pendimethalin	-	-	0.4							
Pentachlorophenol	-	-	0.01							
Permethrin	-	-	0.2							
Picloram	-	-	0.30							
Piperonyl butoxide	-	-	0.6							
Pirimicarb	-	-	0.007							
Pirimiphos methyl	-	-	0.09							
Polihexanide	-	-	0.7							
Profenofos	-	-	0.0003							
Propachlor	-	-	0.07							
Propanil	-	-	0.7							
Propargite	-	-	0.007							
Proparzine	-	-	0.05							
Propiconazole	-	-	0.1							
Propyzamide	-	-	0.07							
Pyrasulfatole	-	-	0.04							
Pyrazophos	_	-	0.02							
Pyroxsulam	-	-	4							
Quintozene	-	-	0.03							
Simazine	3.2	-	0.02							
Spirotetramat	_	-	0.2							
Sulprofos	_	-	0.01							
2,4,5-T	36	-	0.1							
Tebuthiuron	2.2	-	-							
Temephos	_	0.05 ^D	0.4							
Terbacil	-	-	0.2							
Terbufos	-	-	0.0009							
Terbuthylazine	-	-	0.01							
Terbutryn	-	-	0.4							
Thiobencarb	2.8	-	0.04							
Thiometon	-	-	0.004							

	Groundwater Investigation Levels								
Substance	Fresh Waters ^A	Marine Waters ^A	Drinking Water ^B						
	(µg/L)	(µg/L)	(mg/L)						
Thiram	0.01	-	0.007						
Toltrazuril	-	-	0.004						
Toxafene	0.1 ^D	-	-						
Triadimefon	-	-	0.09						
Trichlorfon	-	-	0.007						
Triclopyr	-	-	0.02						
Trifluralin	2.6 ^D	-	0.09						
Vernolate	-	0.04							
	Surfactants								
Linear alkylbenzene sulfonates (LAS)	280	-	-						
Alcohol ethoxylated sulfate (AES)	650	-	-						
Alcohol ethoxylated surfactants (AE)	140	-	-						

- A Investigation levels apply to typical slightly-moderately disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.
- B Investigation levels are taken from the health values of the Australian Drinking Water Guidelines (NHMRC 2011).
- C Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.
- D Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.
- E For changes in GIL with pH refer to ANZECC & ARMCANZ (2000) for further guidance.
- H Values have been calculated using a hardness of 30 mg/L CaCO₃ refer to ANZECC & ARMCANZ (2000) for further guidance on recalculating for site-specific hardness.

US EPA

Regional Screening Levels (RSLs) -Generic Tables (June 2017)

rotice) ; c = cancer; n = noncancer; * = where: n						_NUIX PPRIV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user guide Section 2.3. 3L < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration m			b; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA applied (ay exceed ceiling limit (See User Guide); s = Concentration may exceed Csat (See User Guide)										
To	oxicity and Che	mical-specific II	nformation			Contaminant		Screening Levels								Protection of Ground Water SSLs			
SFO e IUR	RfD.	e RfC _i e	o muta-		C _{sat}			Resident Soi		Industrial Soil	F	Resident Air	Industrial Air	r Tapwater	MCL	SSL		SSL	
(mg/kg-day)-1 y (ug/m3)-1	y (mg/kg-day)	y (mg/m ³) y	I gen GIAB	S ABS	(mg/kg)	Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m ³) ke	ey (ug/m ³)	key (ug/L) ke	y (ug/L)	(mg/kg)	key	(mg/kg)	
2 2E-06	1.2E-03	0 9.0E-03	1 V 1	0.1	1 1E+05	Acephate	30560-19-1 75-07-0	7.6E+01 1.1E+01	n c**	9.8E+02 4.9E+01	n c**	1.3E+00 c	* 5.6E+00	2.4E+01 n	*	5.3E-03 5.2E-04	n c**		
2.22-00	2.0E-02	1	i i	0.1	1.12.00	Acetochlor	34256-82-1	1.3E+03	'n	1.6E+04	'n	1.02.00 0	0.02.00	3.5E+02 n		2.8E-01	n		
	9.0E-01	I 3.1E+01 A	V 1		1.1E+05	Acetone	67-64-1	6.1E+04	n	6.7E+05	nms	3.2E+04 I	1.4E+05	n 1.4E+04 n	1	2.9E+00	n		
		2.0E-03 X 6.0E-02 I	V 1	0.1	1.3E+05	Acetone Cyanonydrin Acetonitrile	75-86-5	2.8E+06 8.1E+02	nm	1.2E+07 3.4E+03	nm	2.1E+00 I 6.3E+01 I	1 8.8E+00	n n 1.3E+02 n		2.6E-02	n		
	1.0E-01	1	V 1		2.5E+03	Acetophenone	98-86-2	7.8E+03	ns	1.2E+05	nms			1.9E+03 n	1	5.8E-01	n		
3.8E+00 C 1.3E-03	5 505 04	1 2 05 05 1	1	0.1	2 25 104	Acetylaminofluorene, 2-	53-96-3	1.4E-01	с	6.0E-01	с	2.2E-03	9.4E-03	c 1.6E-02 c		7.2E-05	C		
5.0F-01 1.0F-04	5.0E-04	1 2.0E-03 1	M 1	0.1	2.35704	Acrylamide	79-06-1	2.4E-01	c	4.6F+00	c	1.0E-02	1.2E-02	c 5.0E-02 0		0.4E-00 1.1E-05	C		
	5.0E-01	I 1.0E-03 I	V 1		1.1E+05	Acrylic Acid	79-10-7	9.9E+01	n	4.2E+02	n	1.0E+00	4.4E+00	n 2.1E+00 n		4.2E-04	n		
5.4E-01 I 6.8E-05	I 4.0E-02	A 2.0E-03 I	V 1	0.1	1.1E+04	Acrylonitrile	107-13-1	2.5E-01	C*	1.1E+00	C*	4.1E-02 c	* 1.8E-01	c* 5.2E-02 c	•	1.1E-05	C*		
5.6E-02 C	1.0E-02	0.0E-03 P	1	0.1		Alachlor	15972-60-8	9.7E+00	c*	4.1E+01	C	0.32700	1 2.05+01	1.1E+00 c	2.0E+00	8.7E-04	с	1.6E-03	
	1.0E-03	1	1	0.1		Aldicarb	116-06-3	6.3E+01	n	8.2E+02	n			2.0E+01 n	3.0E+00	4.9E-03	n	7.5E-04	
	1.0E-03	1	1	0.1		Aldicarb Sulfone	1646-88-4	6.3E+01	n	8.2E+02	n			2.0E+01 n	2.0E+00	4.4E-03	n	4.4E-04	
1.7E+01 4.9E-03	I 3.0E-05	I.	V 1	0.1		Aldicarb suitoxide Aldrin	309-00-2	3.9E-02	c*	1.8E-01	с	5.7E-04 (2.5E-03	c 9.2E-04 c	4.0E+00	1.5E-04	с	8.8E-04	
	5.0E-03	I 1.0E-04 X	V 1		1.1E+05	Allyl Alcohol	107-18-6	3.5E+00	n	1.5E+01	n	1.0E-01 I	1 4.4E-01	n 2.1E-01 n	1	4.2E-05	n		
2.1E-02 C 6.0E-06	1.05.00	1.0E-03 I	V 1		1.4E+03	Allyl Chloride	107-05-1	7.2E-01	C**	3.2E+00	C**	4.7E-01 C	** 2.0E+00	c** 7.3E-01 c*	*	2.3E-04	C**		
	4.0F-04	F 5.0E-03 P	1			Aluminum Aluminum Phosphide	20859-73-8	3.1E+04	n	4.7E+06	nm	5.2E+00 I	2.2E+01	8.0E+00 n		3.0E+04	n D		
	9.0E-03	i .	1	0.1		Ametryn	834-12-8	5.7E+02	n	7.4E+03	n			1.5E+02 n		1.6E-01	n		
2.1E+01 C 6.0E-03	2		1	0.1		Aminobiphenyl, 4-	92-67-1	2.6E-02	С	1.1E-01	С	4.7E-04	2.0E-03	c 3.0E-03 c		1.5E-05	С		
	8.0E-02	Y	1	0.1		Aminophenol, m-	591-27-5 95-55-6	5.1E+03 2.5E+02	n	6.6E+04 3.3E+03	n			1.6E+03 n		6.1E-01 3.0E-02	n		
	2.0E-02	P	1	0.1		Aminophenol, p-	123-30-8	1.3E+03	n	1.6E+04	n			4.0E+02 n		1.5E-01	n		
	2.5E-03	1	1	0.1		Amitraz	33089-61-1	1.6E+02	n	2.1E+03	n			8.2E+00 n	1	4.2E+00	n		
	2 0E 01	5.0E-01 I	V 1			Ammonia Ammonium Sulfamate	7664-41-7	1.65±04		2 35±05	nm	5.2E+02 I	n 2.2E+03	n 4.0E±03 m					
	2.02-01	3.0E-03 X	V 1		1.4E+04	Amy Alcohol, tert	75-85-4	8.2E+01	n	3.4E+02	n	3.1E+00 I	1.3E+01	n 6.3E+00 n	1	1.3E-03	n		
5.7E-03 I 1.6E-06	C 7.0E-03	P 1.0E-03 I	1	0.1			62-53-3	9.5E+01	C**	4.0E+02	C*	1.0E+00	4.4E+00	n 1.3E+01 c	•	4.6E-03	C*		
4.0E-02 P	2.0E-03	X	1	0.1		Anthraquinone, 9, 10-	84-65-1	1.4E+01	C**	5.7E+01	C*			1.4E+00 c	0.05+00	1.4E-02	C*	0.75.04	
	4.0E-04 5.0E-04	н	0.15				1314-60-9	3.9E+01	n	4.7E+02 5.8F+02	n			9.7E+00 n	6.0E+00	3.5E-01	n	2.7E-01	
	4.0E-04	Н	0.15			Antimony Tetroxide	1332-81-6	3.1E+01	n	4.7E+02	n			7.8E+00 n			n		
4.55,00 1,4.05,00	0.05.04	2.0E-04 I	0.15	0.00		Antimony Trioxide	1309-64-4	2.8E+05	nm	1.2E+06	nm	2.1E-01	1 8.8E-01	n	4.05+04	4 55 00		0.05.04	
1.5E+00 I 4.3E-03	3.5E-04 3.5E-06	C 5.0E-05 L	1	0.03		Arsine Common Concernation Concernation	7440-38-2	2.7E-01	c⁻R n	3.0E+00 4.1E+00	n	5.2E-04 C	2.9E-03	n 7.0E-02 c	1.0E+01	1.5E-03	C N	2.9E-01	
	3.6E-02	0	1	0.1		Asulam	3337-71-1	2.3E+03	n	3.0E+04	n		<u> </u>	7.2E+02 n	1	1.8E-01	n		
2.3E-01 C	3.5E-02	1	1	0.1		Atrazine	1912-24-9	2.4E+00	с	1.0E+01	с	4 45 00	4.05.00	3.0E-01 c	3.0E+00	2.0E-04	С	1.9E-03	
8.8E-01 C 2.5E-04	4 0E-04	1	1	0.1		Avermedin B1	492-80-8	0.2E-01	C n	2.0E+00 3.3E+02	C n	1.1E-02 (3 4.9E-02	8.0E+00 n		0.1E-04 1.4E+01	C D		
	3.0E-03	A 1.0E-02 A	1	0.1		Azinphos-methyl	86-50-0	1.9E+02	n	2.5E+03	n	1.0E+01 I	4.4E+01	n 5.6E+01 n		1.7E-02	n		
1.1E-01 I 3.1E-05	1	D 7 05 00 D	V 1			Azobenzene	103-33-3	5.6E+00	С	2.6E+01	С	9.1E-02 (4.0E-01	c 1.2E-01 c	:	9.3E-04	С		
	1.0E+00 2.0E-01	P 7.0E-06 P	1 0.07	0.1		Azodicarbonamide Barium	123-77-3 7440-39-3	8.6E+03 1.5E+04	n	4.0E+04 2.2E+05	n	7.3E-03 I 5.2E-01 I	1 3.1E-02	n 2.0E+04 n	2 0E+03	6.8E+00 1.6E+02	n n	8 2E+01	
5.0E-01 C 1.5E-01	C 2.0E-02	C 2.0E-04 C	M 0.02	5		Barium Chromate	10294-40-3	3.0E-01	с	6.2E+00	с	6.8E-06	8.2E-05	c 4.1E-02 c			с		
	5.0E-03	0	V 1			Benfluralin	1861-40-1	3.9E+02	n	5.8E+03	n			2.8E+01 n		9.4E-01	n		
	5.0E-02 2.0E-01		1	0.1		Bensulfuron-methyl	17804-35-2 83055-99-6	3.2E+03 1.3E+04	n	4.1E+04 1.6E+05	n			9.7E+02 n 3.9F+03 n		8.5E-01 1.0E+00	n		
	3.0E-02	1	1	0.1		Bentazon	25057-89-0	1.9E+03	n	2.5E+04	n			5.7E+02 n	1	1.2E-01	n		
4.0E-03 P	1.0E-01		V 1		1.2E+03	Benzaldehyde	100-52-7	1.7E+02	C*	8.2E+02	С	2.05.04	1.05.00	1.9E+01 c	E OF LCO	4.1E-03	С	0.05.00	
5.5E-02 I 7.8E-06 1.0E-01 X	3.0F-04	1 3.0E-02 T	v 1	0.1	1.8E+03	Benzene Benzenediamine-2-methyl sulfate, 1.4-	6369-59-1	1.2E+00 5.4E+00	C**	5.1E+00 2.3E+01	C*	3.6E-01 C	1.6E+00	7.8E-01 C	5.0E+00	2.3E-04 2.2E-04	C**	2.6E-03	
1.02 01 A	1.0E-03	P	V 1	0.1	1.3E+03	Benzenethiol	108-98-5	7.8E+01	n	1.2E+03	n			1.7E+01 n		1.1E-02	n		
2.3E+02 6.7E-02	1 3.0E-03	1	M 1	0.1		Benzidine	92-87-5	5.3E-04	С	1.0E-02	С	1.5E-05 (1.8E-04	c 1.1E-04 c		2.8E-07	С		
1.3E+01	4.0E+00	1	1 V 1	0.1	3 2E+02	Benzolc Acid	65-85-0 98-07-7	2.5E+05 5.3E-02	nm	3.3E+06 2.5E-01	nm			7.5E+04 n 3.0E-03 c		1.5E+01 6.6E-06	n		
7.0E-01 1	1.0E-01	Р	. 1	0.1	0.20102	Benzyl Alcohol	100-51-6	6.3E+03	n	8.2E+04	n			2.0E+03 n		4.8E-01	n		
1.7E-01 4.9E-05	C 2.0E-03	P 1.0E-03 P	V 1		1.5E+03	Benzyl Chloride	100-44-7	1.1E+00	C*	4.8E+00	C*	5.7E-02 c	* 2.5E-01	c* 8.9E-02 c	105.05	9.8E-05	C*	0.05.00	
2.4E-03	9.0E-03	I 2.0E-05 I P	0.00	0.1		Beryllium and compounds Bifenox	7440-41-7 42576-02-3	1.6E+02 5.7E+02	n	2.3E+03 7.4E+03	n	1.2E-03 c	5.1E-03	c 2.5E+01 n 1.0E+02 n	4.0E+00	1.9E+01 7.6E-01	n	3.2E+00	
	1.5E-02	1	1	0.1		Biphenthrin	82657-04-3	9.5E+02	n	1.2E+04	n			3.0E+02 m		1.4E+03	n		
8.0E-03 I	5.0E-01	I 4.0E-04 X	V 1			Biphenyl, 1,1'-	92-52-4	4.7E+01	n	2.0E+02	n	4.2E-01	1.8E+00	n 8.3E-01 n	1	8.7E-03	n		
	4.0E-02	P	v 1	0.1	1.0E+03	Bis(2-chloro-1-methylethyl) ether	108-60-1	3.1E+03	ns	4.7E+04	ns			7.1E+02 n		2.6E-01	n		
1.1E+00 I 3.3E-04	3.0E-03		V 1	0.1	5.1E+03	Bis(2-chloroethyl)ether	111-44-4	2.3E-01	c	1.0E+00	c	8.5E-03	3.7E-02	c 1.4E-02 c		3.6E-06	c		
2.2E+02 I 6.2E-02	1		V 1		4.2E+03	Bis(chloromethyl)ether	542-88-1	8.3E-05	С	3.6E-04	С	4.5E-05	2.0E-04	c 7.2E-05 c		1.7E-08	С		
	5.0E-02		1	0.1		Bisphenol A Boron And Borates Only	80-05-7 7440.42 P	3.2E+03	n	4.1E+04 2.3E±05	n	2 1E+01	8.85±04	7.7E+02 n		5.8E+01	n		
	2.0E+00	P 2.0E-02 H	V 1			Boron Trichloride	10294-34-5	1.6E+04	nm	2.3E+05	nm	2.1E+01	8.8E+01	n 4.2E+01 n		1.52701	n		
	4.0E-02	C 1.3E-02 C	V 1			Boron Trifluoride	7637-07-2	3.1E+03	n	4.7E+04	n	1.4E+01 I	5.7E+01	n 2.6E+01 n			n		
7.0E-01 I	4.0E-03	1	1 V 1		2 46103	Bromate Bromo 2 chloroothano 1	15541-45-4	9.9E-01	С	4.7E+00	С	4 75 03	2.05.02	1.1E-01 c	1.0E+01	8.5E-04	C	7.7E-02	
2.02.00 A 0.02-04	8.0E-03	1 6.0E-02 1	V 1		6.8F+02	Bromobenzene	108-86-1	2.0E-02	n	1.8E+03	ns	6.3E+01	2.0E-02	n 6.2F+01 n		4.2E-02	n		

<pre>Key: I = IRIS; P = PPRTV; D = DWSHA; O = OPP; A = ATSDR; C = Cal EPA; X = APPE notice) : c = cancer: n = noncancer: * = where: n S</pre>						<pre>PA; X = APPE = where: n S</pre>	INDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user guide Section 2.3. L < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m = Concentration rr			; L = see user guide on lead; M = mutagen; S = see user guide Section 5; V = volatile; R = RBA appli nay exceed ceiling limit (See User Guide); s = Concentration may exceed Csat (See User Guide)									lied (See User Guide for Arsenic			
	Toxic	city and Chen	nical-specific Ir	nformation			Contaminant		Screening Levels								Protection of	Protection of Ground Water SSLs				
SEO	k K	RfD.	k k RfCie	v o muta-		C			Resident Soil		Industrial Sol	al	Resident Air	r I	ndustrial Ai	r I	Tanwater	MCI	Risk-based		MCL-based	
(mg/kg-dav) ⁻¹	v (ug/m ³) ⁻¹ v ((mg/kg-day)	v (ma/m ³) v	I gen G	GIABS A	BS (mg/kc) Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m ³)	key	(ua/m ³)	key	(ug/L) key	(ug/L)	(mg/kg)	key	(mg/kg)	
			4.0E-02 X	V	1	4.0E+0	3 Bromochloromethane	74-97-5	1.5E+02	n	6.3E+02	n	4.2E+01	n	1.8E+02	n	8.3E+01 n	,	2.1E-02	n		
6.2E-02	I 3.7E-05 C	2.0E-02	1	V	1	9.3E+0	2 Bromodichloromethane	75-27-4	2.9E-01	С	1.3E+00	С	7.6E-02	С	3.3E-01	С	1.3E-01 c	8.0E+01(F)	3.6E-05	С	2.2E-02	
7.9E-03	I 1.1E-06 I	2.0E-02		V	1	9.2E+0	2 Bromoform	75-25-2	1.9E+01	C*	8.6E+01	c	2.6E+00	c	1.1E+01	c	3.3E+00 c	8.0E+01(F)	8.7E-04	c	2.1E-02	
		1.4E-03 5.0E-03	1 5.0E-03 1 H	v	1	3.0E+U	Bromophos	2104-96-3	3.9F+02	n	5.8E+01	n	5.2E+00	n	2.2E+01	п	3.5E+00 n		1.9E-03 1.5E-01	n		
1.0E-01	0	1.5E-02	0		1 0	J.1	Bromoxynil	1689-84-5	5.3E+00	С	2.2E+01	С					6.1E-01 c		5.2E-04	С		
		1.5E-02	0	V	1		Bromoxynil Octanoate	1689-99-2	1.2E+03	n	1.8E+04	n					1.0E+02 n		9.0E-01	n		
3.4E+00	C 3.0E-05 I	2.05.02	2.0E-03 I	V	1	6.7E+0	2 Butadiene, 1,3-	106-99-0	5.8E-02	C*	2.6E-01	C*	9.4E-02	C*	4.1E-01	C*	1.8E-02 c		9.9E-06	C		
		3.0E-02 1.0E-01	0	V	1 ().1 7.6E+0	Butanoic acid, 4-(2,4-dichlorophenoxy)-	94-82-6 71-36-3	1.9E+03 7.8E+03	n	2.5E+04 1.2E+05	nme					4.5E+02 n 2.0E+03 n		4.2E-01 4.1E-01	n		
		2.0E+00	P 3.0E+01 P	v	1	2.1E+C	4 Butyl alcohol, sec-	78-92-2	1.3E+05	nms	1.5E+06	nms	3.1E+04	n	1.3E+05	n	2.4E+04 n		5.0E+00	n		
		5.0E-02	1	V	1		Butylate	2008-41-5	3.9E+03	n	5.8E+04	n					4.6E+02 n		4.5E-01	n		
2.0E-04	C 5.7E-08 C	2.05.04			1 0	J.1	Butylated hydroxyanisole	25013-16-5	2.7E+03	с	1.1E+04	с	4.9E+01	с	2.2E+02	с	1.5E+02 c		2.9E-01	с		
3.6E-03	P	3.0E-01	P D	V	1 ().1 1 1E±0	Butylated hydroxytoluene	128-37-0	1.5E+02	C	6.4E+02	C					3.4E+00 C		1.0E-01	C		
		1.0E-02	X	v	1	1.5E+0	2 Butylbenzene, sec-	135-98-8	7.8E+03	ns	1.2E+05	nms					2.0E+03 n		5.9E+00	n		
		1.0E-01	х	V	1	1.8E+0	2 Butylbenzene, tert-	98-06-6	7.8E+03	ns	1.2E+05	nms					6.9E+02 n		1.6E+00	n		
		2.0E-02	A		1 0).1	Cacodylic Acid	75-60-5	1.3E+03	n	1.6E+04	n					4.0E+02 n		1.1E-01	n		
	1.8E-03 I	1.0E-03 5.0E-04	I 1.0E-05 A	(0.05 0.	001	Cadmium (Diet) Cadmium (Water)	7440-43-9	7.1E+01	n	9.8E+02	n	1.6E-03	c**	6.8E-03	C**	9.2E+00 p	5.0E+00	6.9E-01	n	3.8E-01	
5.0E-01	C 1.5E-01 C	2.0E-04	C 2.0F-04 C	м	0.025		Calcium Chromate	13765-19-0	3.0E-01	с	6.2E+00	c	6.8E-06	c	8.2E-05	0	4.1E-02 C	3.0L+00	0.52-01	C	0.02-01	
		5.0E-01	I 2.2E-03 C		1 0).1	Caprolactam	105-60-2	3.1E+04	n	4.0E+05	nm	2.3E+00	n	9.6E+00	n	9.9E+03 n		2.5E+00	n		
1.5E-01	C 4.3E-05 C	2.0E-03	1		1 0	J.1	Captafol	2425-06-1	3.6E+00	C*	1.5E+01	С	6.5E-02	С	2.9E-01	С	4.0E-01 c*		7.1E-04	C*		
2.3E-03	C 6.6E-07 C	1.3E-01			1 0).1).1	Carband	133-06-2	2.4E+02	C*	1.0E+03	C	4.3E+00	С	1.9E+01	С	3.1E+01 c*		2.2E-02	C*		
		5.0E-03	i i		1 0).1)1	Carbofuran	1563-66-2	3.2E+03	n	8.2E+04 4 1E+03	n					9.4E+01 n	4 0E+01	3.7E-02	n	1.6E-02	
		1.0E-01	I 7.0E-01 I	V	1	7.4E+C	2 Carbon Disulfide	75-15-0	7.7E+02	ns	3.5E+03	ns	7.3E+02	n	3.1E+03	n	8.1E+02 n	1.02.01	2.4E-01	n	1.02 02	
7.0E-02	I 6.0E-06 I	4.0E-03	I 1.0E-01 I	V	1	4.6E+0	2 Carbon Tetrachloride	56-23-5	6.5E-01	с	2.9E+00	с	4.7E-01	с	2.0E+00	с	4.6E-01 c	5.0E+00	1.8E-04	с	1.9E-03	
		4.05.00	1.0E-01 P	V	1	5.9E+0	3 Carbonyl Sulfide	463-58-1	6.7E+01	n	2.8E+02	n	1.0E+02	n	4.4E+02	n	2.1E+02 n		5.1E-01	n		
		1.0E-02 1.0E-01	1		1 0).1) 1	Carbosuran	55285-14-8 5234-68-4	6.3E+02 6.3E+03	n	8.2E+03 8.2E+04	n					5.1E+01 N		1.2E+00 1.0E+00	n		
		1.02-01	9.0E-04 I		1	/.1		1306-38-3	1.3E+06	nm	5.4E+06	nm	9.4E-01	n	3.9E+00	n	1.52.00 11		1.02.00			
		1.0E-01	1	V	1		Chloral Hydrate	302-17-0	7.8E+03	n	1.2E+05	nm					2.0E+03 n		4.0E-01	n		
4.05.04		1.5E-02	1		1 0).1	Chloramberi	133-90-4	9.5E+02	n	1.2E+04	n					2.9E+02 n		7.0E-02	n		
4.0E-01 3.5E-01	H 1.0E-04 L	5.0E-04	1 7 0E-04 1	V	1 0	0.1	Chlordane	12789-03-6	1.3E+00	C *	5.7E+00	C	2.8E-02	C*	1 2E-01	c*	2.0E-02 c*	2.0E+00	1.5E-04 2.7E-03	C*	2 7E-01	
1.0E+01	I 4.6E-03 C	3.0E-04	1	•	1 0	.04).1	Chlordecone (Kepone)	143-50-0	5.4E-02	c	2.3E-01	c	6.1E-04	c	2.7E-03	c	3.5E-03 C	2.02.00	1.2E-04	c	2.72-01	
		7.0E-04	A		1 0).1	Chlorfenvinphos	470-90-6	4.4E+01	n	5.7E+02	n					1.1E+01 n		3.1E-02	n		
		9.0E-02	0		1 0	J.1	Chlorinuron, Ethyla	90982-32-4	5.7E+03	n	7.4E+04	n	4 55 44				1.8E+03 n		6.0E-01	n		
		1.0E-01 3.0E-02	I 1.5E-04 A	v	1	2.8E+0	Chlorine Chl	7782-50-5	1.8E-01 2.3E+03	n	7.8E-01 3.4E+04	n	1.5E-01 2 1E-01	n	6.4E-01 8.8E-01	n	3.0E-01 n		1.4E-04	n		
		3.0E-02	1 2.02-04 1	•	1		Chlorite (Sodium Salt)	7758-19-2	2.3E+03	n	3.5E+04	n	2.12-01		0.02-01		6.0E+02 n	1.0E+03		n		
			5.0E+01 I	V	1	1.2E+0	3 Chloro-1, 1-difluoroethane, 1-	75-68-3	5.4E+04	ns	2.3E+05	nms	5.2E+04	n	2.2E+05	n	1.0E+05 n		5.2E+01	n		
1.05.04	3.0E-04 I	2.0E-02	H 2.0E-02 I	V	1	7.9E+0	2 Chloro 1,3 butadiene, 2	126-99-8	1.0E-02	С	4.4E-02	С	9.4E-03	С	4.1E-02	С	1.9E-02 c		9.8E-06	С		
4.6E-01 1.0E-01	H P 7 7E-05 C	3.0E-03	x		1 0).1) 1	Chloro-2-methylaniline HCl, 4- Chloro-2-methylaniline 4-	3165-93-3	1.2E+00 5.4E+00	с с*	5.0E+00 2.3E+01	c	3.6E-02	c .	1.6E-01	<u> </u>	1./E-01 C		1.5E-04 4.0E-04	с с*		
2.7E-01	X	0.02-00	~	V	1	1.2E+C	4 Chloroacetaldehyde, 2-	107-20-0	2.6E+00	c	1.2E+01	c	0.02-02	Ŭ	1.02-01	č	2.9E-01 c		5.8E-05	c		
					1 0).1	Chloroacetic Acid	79-11-8										6.0E+01			1.2E-02	
0.05.04	P	4.05.00	3.0E-05 I		1 0	J.1	Chloroacetophenone, 2-	532-27-4	4.3E+04	n	1.8E+05	nm	3.1E-02	n	1.3E-01	n	0.75.04		4.05.01			
2.0E-01	٢	4.0E-03	1 5.0E-02 P	V	1 (7.65±0	Chlorobenzene	106-47-8	2.7E+00 2.8E+02	C*	1.1E+01 1.3E+03	C	5.2E+01	n	2 2E+02	n	3.7E-01 C	1.0E+02	1.6E-04	C	6.8E-02	
		1.0E-02	X	•	1 0	7.02∓0).1	Chlorobenzene sulfonic acid, p-	98-66-8	6.3E+02	n	8.2E+04	n	J.2L 101		2.20102		2.0E+03 n	1.02102	4.7E-02	n	0.02-02	
1.1E-01	C 3.1E-05 C	2.0E-02	1		1 0).1	Chlorobenzilate	510-15-6	4.9E+00	с	2.1E+01	с	9.1E-02	с	4.0E-01	с	3.1E-01 c		1.0E-03	с		
		3.0E-02	X	N/	1 0).1	Chlorobenzoic Acid, p-	74-11-3	1.9E+03	n	2.5E+04	n	0.45.00		4.05.00		5.1E+02 n		1.3E-01	n		
		3.0E-03 4.0E-02	P 3.0E-01 P	v	1	2.9E+0 7.3E+0	2 Chlorobutane, 1-	98-56-6 109-69-3	2.1E+02 3.1E+03	n	2.5E+03 4.7E+04	ns	3.1E+02	n	1.3E+03	n	3.5E+01 n 6.4E+02 n		1.2E-01 2.6E-01	n p		
			5.0E+01 I	V	1	1.7E+0	3 Chlorodifluoromethane	75-45-6	4.9E+04	ns	2.1E+05	nms	5.2E+04	n	2.2E+05	n	1.0E+05 n		4.3E+01	n		
		2.0E-02	Р	V	1	1.1E+0	5 Chloroethanol, 2-	107-07-3	1.6E+03	n	2.3E+04	n					4.0E+02 n		8.1E-02	n		
3.1E-02	C 2.3E-05 I	1.0E-02	1 9.8E-02 A	V	1	2.5E+0	3 Chloroform	67-66-3	3.2E-01	С	1.4E+00	С	1.2E-01	С	5.3E-01	С	2.2E-01 c	8.0E+01(F)	6.1E-05	С	2.2E-02	
2 45+00			9.0E-02 I	V	1	1.3E+0	3 Chloromethane	74-87-3	1.1E+02	n	4.6E+02	n	9.4E+01	n	3.9E+02	n	1.9E+02 n		4.9E-02	n		
3.0E-01	P	3.0E-03	P 1.0E-05 X	•	1 0	J.1	Chloronitrobenzene, o-	88-73-3	1.8E+00	c	7.7E+00	c	1.0E-02	n	4.4E-02	n	2.4E-01 C		2.2E-04	c		
6.0E-02	Р	7.0E-04	P 2.0E-03 P		1 0).1	Chloronitrobenzene, p-	100-00-5	9.0E+00	C**	3.8E+01	C*	2.1E+00	n	8.8E+00	n	1.2E+00 c*		1.1E-03	C*		
		5.0E-03	1 05 04 0	V	1	2.7E+0	4 Chlorophenol, 2-	95-57-8	3.9E+02	n	5.8E+03	n	4.05.04		4.05.00		9.1E+01 n		8.9E-02	n		
3 1E-03	C 8 9E-07 C	1.5E-02	4.0E-04 C	v	1 0	0.2E+0	Chlorotbaloni	1897-45-6	2.0E+00 1.8E+02	n c**	8.2E+00 7.4E+02	n c*	4.2E-01 3.2E+00	n	1.8E+00	n	2.2E+01 0*		2.5E-04 5.0E-02	r1 C*		
0.12-00	0 0.02-01 0	2.0E-02	i	V	1	9.1E+0	2 Chlorotoluene, o-	95-49-8	1.6E+03	ns	2.3E+04	ns	5.22.00	Ŭ		Ũ	2.4E+02 n		2.3E-01	n		
		2.0E-02	х	V	1	2.5E+0	2 Chlorotoluene, p-	106-43-4	1.6E+03	ns	2.3E+04	ns					2.5E+02 n		2.4E-01	n		
2.4E+02	C 6.9E-02 C	F 0F 00	0		1 0).1	Chlorozotocin	54749-90-5	2.3E-03	с	9.6E-03	с	4.1E-05	с	1.8E-04	с	3.2E-04 C		7.1E-08	с		
		5.0E-02 1.0E-03	A		1 0).1).1	Chlorovrifos	2921-88-2	3.2E+03 6.3E+01	n	4.1E+04 8.2E+02	n					7.1E+02 n 8.4F+00 n		6.4E-01 1.2E-01	n		
		1.0E-02	н		1 0	0.1	Chlorpyrifos Methyl	5598-13-0	6.3E+02	n	8.2E+03	n					1.2E+02 n		5.4E-01	n		
		2.0E-02	0		1 0).1	Chlorsulfuron	64902-72-3	1.3E+03	n	1.6E+04	n					3.9E+02 n		3.3E-01	n		
		1.0E-02	1		1 0).1	Chlorthal-dimethyl	1861-32-1	6.3E+02	n	8.2E+03	n					1.2E+02 n		1.5E-01	n		
		0.0E-04 1.5E+00	1	(0.013	7.1	Chromium(III), Insoluble Salts	16065-83-1	5.1E+01 1.2E+05	n	0.0E+02 1.8E+06	n					2.8E+00 n 2.2E+04 n		4.0F+07	n p		

notice); c = cancer; n = nonc	= Cal EPA; X = APPE ancer; * = where: n SL	L < 100X c SL; ** = where n SL < 10X c SL; SSL values are based on DAF=1; m =	Concentration r	nay exceed ceiling limit (See User Guide	e); s = Concentration may exceed Csat (See User Guide)	pplied (See User Guide for Arsenic
Toxicity and Chemical-specific Information		Contaminant			Screening Levels	Protection of Ground Water SSLs
SFO e IUR e RfD _e e RfC _i e muta-	C _{sat}			Resident Soil Industrial Soil	Resident Air Industrial Air Tapwater MCL	SSL SSL
(mg/kg-day) ⁻¹ y (ug/m ³) ⁻¹ y (mg/kg-day) y (mg/m ³) y I gen GI/	ABS ABS (mg/kg)	Analyte	CAS No.	(mg/kg) key (mg/kg) key	(ug/m ³) key (ug/m ³) key (ug/L) key (ug/L)	(mg/kg) key (mg/kg)
5.0E-01 C 8.4E-02 S 3.0E-03 I 1.0E-04 I M 0.0	J25 J13	Chromium (VI)	18540-29-9	3.0E-01 c 6.3E+00 c	1.2E-05 c 1.5E-04 c 3.5E-02 c	6.7E-04 C
1.3E-02 I	1 0.1	Clofentezine	74115-24-5	8.2E+02 n 1.1E+04 n	2.3E+02 n	1.4E+01 n
9.0E-03 P 3.0E-04 P 6.0E-06 P	1	Cobalt	7440-48-4	2.3E+01 n 3.5E+02 n	3.1E-04 c* 1.4E-03 c* 6.0E+00 n	2.7E-01 n
6.2E-04 I V M	1	Coke Oven Emissions	8007-45-2	2.1EL02 p. 4.7EL04 p.	1.6E-03 c 2.0E-02 c	2 2 85101 5 4 65101
4.0E-02 H 5.0E-02 I 6.0E-01 C	1 0.1	Cresol, m-	108-39-4	3.1E+03 n 4.1E+04 n	6.3E+02 n 2.6E+03 n 9.3E+02 n	7.4E-01 n
5.0E-02 I 6.0E-01 C	1 0.1	Cresol, o-	95-48-7	3.2E+03 n 4.1E+04 n	6.3E+02 n 2.6E+03 n 9.3E+02 n	7.5E-01 n
1.0E-01 A 6.0E-01 C	1 0.1	Cresol, p-	106-44-5	6.3E+03 n 8.2E+04 n	6.3E+02 n 2.6E+03 n 1.9E+03 n	1.5E+00 n
1.0E-01 A 6.0E-01 C	1 0.1	Cresols	1319-77-3	6.3E+03 n 8.2E+04 n	6.3E+02 n 2.6E+03 n 1.5E+03 n	1.3E+00 n
1.9E+00 H 1.0E-03 P V	1 1.7E+04	Crotonaldehyde, trans-	123-73-9	3.7E-01 c 1.7E+00 c	4.0E-02 c	8.2E-06 c
1.0E-01 4.0E-01 V	1 2.7E+02	Currene	98-82-8	1.9E+03 ns 9.9E+03 ns	4.2E+02 n 1.8E+03 n 4.5E+02 n	7.4E-01 n
8.4E-01 H 2.0E-03 H	1 0.1	Cyanazine	21725-46-2	6.5E-01 c 2.7E+00 c	4.5E-02 C 1.5E-01 C 5.5E-01 C 8.8E-02 C	4.1E-05 c
		Cyanides				
1.0E-03 I	1	~Calcium Cyanide	592-01-8	7.8E+01 n 1.2E+03 n	2.0E+01 n	n
6.0E-03 I 6.0E-04 I 8.0E-04 S V	1 9.5E+05	-Cyanide (CN-)	57-12-5	2.3E+01 n 1.5E+02 n	8.3E-01 n 3.5E+00 n 1.5E+00 n 2.0E+0	2 1.5E-02 n 2.0E+00
1.0E-03 I V	1	~Cyanogen	460-19-5	7.8E+01 n 1.2E+03 n	2.0E+01 n	n
9.0E-02 I V	1	~Cyanogen Bromide	506-68-3	7.0E+03 n 1.1E+05 nm	1.8E+03 n	n
5.0E-02 I V 6.0F-04 I 8.0F-04 I V	1 1.0E+07	~Cyanogen Chionae	74-90-8	2.3E+01 n 1.5E+02 n	8.3E-01 n 3.5E+00 n 1.5F+00 n	1.5E-02 n
2.0E-03 I	1	~Potassium Cyanide	151-50-8	1.6E+02 n 2.3E+03 n	4.0E+01 n	n
5.0E-03 I 0.	04	~Potassium Silver Cyanide	506-61-6	3.9E+02 n 5.8E+03 n	8.2E+01 n	n
1.0E-01 I 0. 1.0E-03 I	04 1	~Silver Cyanide ~Sodium Cyanide	506-64-9 143-33-9	7.8E+03 n 1.2E+05 nm 7.8E+01 n 1.2E+03 n	1.8E+03 n 2.0E+01 n 2.0E+0	n 2 n
2.0E-04 P	1	~Thiocyanates	E1790664	1.6E+01 n 2.3E+02 n	4.0E+00 n	n
2.0E-04 X V	1	~Thiocyanic-Acid	463-56-9	1.6E+01 n 2.3E+02 n	4.0E+00 n	n
5.0E-02 I 6.0E+00 I V	1 1.2E+02		557-21-1 110-82-7	3.9E+03 n 5.8E+04 n 6.5E+03 ns 2.7E+04 ns	1.0E+03 n 6.3E+03 n 2.6E+04 n 1.3E+04 n	n 1.3E+01 n
2.0E-02 X 2.0E-02 X	1 0.1	Cyclotexane, 1,2,3,4,5-pentabromo-6-chloro-	87-84-3	2.7E+01 c* 1.1E+02 c	2.8E+00 c	1.6E-02 c
5.0E+00 I 7.0E-01 P V	1 5.1E+03	Cyclotexanone U V cilling Uitting V V	108-94-1	2.8E+04 ns 1.3E+05 nms	7.3E+02 n 3.1E+03 n 1.4E+03 n	3.4E-01 n
2.0E-03 P 1.0E+00 X V	1 2.8E+02 1 2.9E+05	Cyclohexylamine	108-91-8	3.1E+02 ns 3.1E+03 ns 1.6E+04 n 2.3E+05 nm	1.0E+03 n 4.4E+03 n 7.0E+01 n 3.8E+03 n	4.6E-02 fi 1.0E+00 n
2.5E-02 I	1 0.1	Cyfluthrin	68359-37-5	1.6E+03 n 2.1E+04 n	1.2E+02 n	3.1E+01 n
1.0E-03 O	1 0.1	Cyhalcthrin,	68085-85-8	6.3E+01 n 8.2E+02 n	2.0E+01 n	1.4E+01 n
6.0E-02 O 1.5E-02 O	1 0.1	Cypermethnin	52315-07-8 66215-27-8	3.8E+03 n 4.9E+04 n 9.5E+02 n 1.2E+04 n	1.2E+03 n 3.0E+02 n	1.9E+02 n 7.6E-02 n
2.4E-01 I 6.9E-05 C	1 0.1		72-54-8	2.3E+00 c 9.6E+00 c	4.1E-02 c 1.8E-01 c 3.2E-02 c	7.5E-03 c
3.4E-01 I 9.7E-05 C V	1	DDE, p,p'-	72-55-9	2.0E+00 c 9.3E+00 c	2.9E-02 c 1.3E-01 c 4.6E-02 c	1.1E-02 c
3.4E-01 I 9.7E-05 I 5.0E-04 I 3.0E-02 I	1 0.03	DDT Dalapon	50-29-3 75-99-0	1.9E+00 C* 8.5E+00 C* 1.9E+03 n 2.5E+04 n	2.9E-02 C 1.3E-01 C 2.3E-01 C 6.0E+02 n 2.0E+0	7.7E-02 C [*] 2 1.2E-01 n 4.1E-02
1.8E-02 C 5.1E-06 C 1.5E-01 I	1 0.1	Daminozide	1596-84-5	3.0E+01 c 1.3E+02 c	5.5E-01 c 2.4E+00 c 4.3E+00 c	9.5E-04 c
7.0E-04 I 7.0E-03 I	1 0.1	Decabromodiphenyl ether, 2,2',3,3',4,4',5,5',6,6'- (BDE-209)	1163-19-5	4.4E+02 n 3.3E+03 c**	1.1E+02 c**	6.2E+01 c**
1.2E-03 I 6.0E-01 I	1 0.1	Demeton Di(2-ethylbexyl)adipate	103-23-1	4.5F+02 c* 1.9F+03 c	6.5F+01 c 4.0F+0	2 4.7E+00 c 2.9E+01
6.1E-02 H	1 0.1	Diallate	2303-16-4	8.9E+00 c 3.8E+01 c	5.4E-01 c	8.0E-04 c
7.0E-04 A	1 0.1	Diazinon	333-41-5	4.4E+01 n 5.7E+02 n	1.0E+01 n	6.5E-02 n
8.0E-01 P 6.0E-03 P 2.0E-04 P 2.0E-04 I V M	1 9.8E+02	Dibromo-3-chloropropane, 1,2-	96-12-8	5.3E-03 c 6.4E-02 c	1.7E-04 c 2.0E-03 c 3.3E-04 c 2.0E-0	1 1.4E-07 c 8.6E-05
4.0E-04 X V	1 1.6E+02	Dibromobenzene, 1,3-	108-36-1	3.1E+01 n 4.7E+02 ns	5.3E+00 n	5.1E-03 n
1.0E-02 I V	1 9.05.00	Dibromobenzene, 1,4-	106-37-6	7.8E+02 n 1.2E+04 n 8.3E+00 c 3.9E+01 c	1.3E+02 n	1.2E-01 n (E) 2.3E-04 c 2.1E.02
2.0E+00 6.0E-04 9.0E-03 9.0E-03 V	1 1.3E+03	Dibromoethane, 1,2-	106-93-4	3.6E-02 c 1.6E-01 c	4.7E-03 c 2.0E-02 c 7.5E-03 c 5.0E-0	2 2.1E-06 c 1.4E-05
4.0E-03 X V	1 2.8E+03	Dibromomethane (Methylene Bromide)	74-95-3	2.4E+01 n 9.9E+01 n	4.2E+00 n 1.8E+01 n 8.3E+00 n	2.1E-03 n
3.0E-04 P 3.0E-02 I	1 0.1	Dibutyitin Compounds Dicamba	E1790660 1918-00-9	1.9E+01 n 2.5E+02 n 1.9E+03 n 2.5E+04 n	6.0±+00 n 5.7E+02 n	n 1.5E-01 n
4.2E-03 P V	1 5.5E+02	Dichloro-2-butene, 1,4-	764-41-0	2.1E-03 c 9.4E-03 c	6.7E-04 c 2.9E-03 c 1.3E-03 c	6.6E-07 c
4.2E-03 P V	1 5.2E+02	Dichloro-2-butene, cis-1,4-	1476-11-5	7.4E-03 c 3.2E-02 c	6.7E-04 c 2.9E-03 c 1.3E-03 c	6.2E-07 c
4.2E-U3 P V 5.0E-02 4.0E-03	1 0.1	Dichloroacetic Acid	79-43-6	1.1E+01 c* 4.6E+01 c*	0.7E-04 C 2.9E-03 C 1.3E-03 C 1.5E+00 c* 6.0E+0	1 3.1E-04 c* 1.2E-02
9.0E-02 I 2.0E-01 H V	1 3.8E+02	Dichlorobenzene, 1,2-	95-50-1	1.8E+03 ns 9.3E+03 ns	2.1E+02 n 8.8E+02 n 3.0E+02 n 6.0E+0	2 3.0E-01 n 5.8E-01
5.4E-03 C 1.1E-05 C 7.0E-02 A 8.0E-01 I V	1	Dichlorobenzene, 1,4-	106-46-7	2.6E+00 c 1.1E+01 c	2.6E-01 c 1.1E+00 c 4.8E-01 c 7.5E+0	1 4.6E-04 c 7.2E-02
4.5E-01 1 3.4E-04 C 9.0E-03 X	1 0.1	Dichlorobenzophenone, 4,4'-	91-94-1 90-98-2	5.7E+00 c 5.1E+00 c 5.7E+02 n 7.4E+03 n	0.3E-03 C 3.0E-02 C 1.3E-01 C 7.8E+01 n	8.2E-04 C 4.7E-01 n
2.0E-01 I 1.0E-01 X V	1 8.5E+02	Dichlorodifluoromethane	75-71-8	8.7E+01 n 3.7E+02 n	1.0E+02 n 4.4E+02 n 2.0E+02 n	3.0E-01 n
5.7E-03 C 1.6E-06 C 2.0E-01 P V	1 1.7E+03	Dichloroethane, 1,1-	75-34-3	3.6E+00 c 1.6E+01 c	1.8E+00 c 7.7E+00 c 2.8E+00 c	7.8E-04 C
5.0E-02 2.0E-03 0.0E-03 X 7.0E-03 P V 5.0E-02 2.0E-01 V	1 1.2E+03	Dichloroethylene, 1,1-	75-35-4	2.3E+02 n 1.0E+03 n	2.1E+02 n 8.8E+02 n 2.8E+02 n 7.0E+0	0 1.0E-01 n 2.5E-03
2.0E-03 I V	1 2.4E+03	Dichloroethylene, 1,2-cis-	156-59-2	1.6E+02 n 2.3E+03 n	3.6E+01 n 7.0E+0	1 1.1E-02 n 2.1E-02
2.0E-02 I V 3.0E-03 I	1 1.9E+03	Dichloroethylene, 1,2-trans-	156-60-5	1.6E+03 n 2.3E+04 ns	3.6E+02 n 1.0E+0	2 1.1E-01 n 3.1E-02 2.3E-02 n
1.0E-02	1 0.05	Dichlorophenoxy Acetic Acid, 2,4-	94-75-7	7.0E+02 n 9.6E+03 n	1.7E+02 n 7.0E+0	1 4.5E-02 n 1.8E-02
3.7E-02 P 3.7E-05 P 4.0E-02 P 4.0E-03 I V	1 1.4E+03	Dichloropropane, 1,2-	78-87-5	2.8E-01 c* 1.2E+00 c*	7.6E-02 c* 3.3E-01 c* 1.4E-01 c* 5.0E+0	0 4.7E-05 c* 1.7E-03
2.0E-02 P V	1 1.5E+03	Dichloropropane, 1,3-	142-28-9	1.6E+03 ns 2.3E+04 ns	3.7E+02 n	1.3E-01 n

Key: I = IRIS; P = PPRTV;	D = DWSHA	.; O = OPP; A otice) : c = ca	<pre>ATSDR; C = ncer: n = nonca</pre>	= Cal EPA; : ancer: * = w	X = APPEN (here: n SI	IDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user gu < 100X c SI : ** = where n SI < 10X c SI : SSI values are based on DAF=1: m =	uide Section 2.3 Concentration	3.5; L = see use may exceed cei	er guid ilina lim	ie on lead; M = hit (See User (= mutagen; S = Guide): s = Co	 see us ncentrat 	er guide Secti ion may excer	ion 5; V = volatile; F ed Csat (See User)	R = RBA appl Guide)	ied (See User	Guide f	or Arsenic
Tox	city and Cher	mical-specific	Information			Contaminant					Scree	ning Lev	els			Protection of (Ground	Water SSLs
SEO O IUB O	RfD	K RfC	K V		с.			Posident Soil		ndustrial Soil	Resident	Air	Industrial Air	Tapwater	MCI	Risk-based		MCL-based
(mg/kg-day) ⁻¹ V (ug/m ³) ⁻¹ V	(mg/kg-day)	v (mg/m ³) v	v I gen GIA	ABS ABS	(mg/kg)	Analyte	CAS No.	(ma/ka)	kev	(ma/ka)	key (ug/m ³)	kev	(ug/m ³)	kev (ug/l) kev	(ug/L)	(ma/ka)	kev	(ma/ka)
(inging day)) (agini /)	3.0E-03	1	, . <u>.</u>	0.1	(Dichloropropanol, 2,3-	616-23-9	1.9E+02	n	2.5E+03	n		(ug/iii)	5.9E+01 n	(-3/	1.3E-02	n	(
1.0E-01 I 4.0E-06 I	3.0E-02	I 2.0E-02	IV 1	1	1.6E+03	Dichloropropene, 1,3-	542-75-6	1.8E+00	C*	8.2E+00	c* 7.0E-01	l c*	3.1E+00	c* 4.7E-01 c*		1.7E-04	c*	
2.9E-01 I 8.3E-05 C	5.0E-04	I 5.0E-04	I 1	I 0.1		Dichlorvos	62-73-7	1.9E+00	С*	7.9E+00	c* 3.4E-02	2 C*	1.5E-01	c* 2.6E-01 c*		8.1E-05	С*	
	7.0E-05	0	1	0.1	0.05.00	Dicrotophos	141-66-2	4.4E+00	n	5.7E+01	n - 245.00		4.05.00	1.4E+00 n		3.3E-04	n	
1.6E+01 4.6E-03	5.0E-02	P 3.0E-04 /	K V 1	01	2.0E+02	Dicyclopentadiene	60-57-1	3.4E-02	n c*	5.4E+00 1.4E-01	c 6.1E-04		2 7E-03	c 1.8E-03 c		2.2E-03 7 1E-05	n c	
3.0E-04 C	0.02 00	5.0E-03	1 1	0.1		Diesel Engine Exhaust	E17136615	0.12.02	<u> </u>		9.4E-03		4.1E-02	c		1.12.00	<u> </u>	
	2.0E-03	P 2.0E-04 F	> 1	0.1		Diethanolamine	111-42-2	1.3E+02	n	1.6E+03	n 2.1E-01	l n	8.8E-01	n 4.0E+01 n		8.1E-03	n	
	3.0E-02	P 1.0E-04 F	P 1	I 0.1		Diethylene Glycol Monobutyl Ether	112-34-5	1.9E+03	n	2.4E+04	n 1.0E-01	l n	4.4E-01	n 6.0E+02 n		1.3E-01	n	
	6.0E-02	P 3.0E-04 F	· 1	0.1	4 45 405	Diethylene Glycol Monoethyl Ether	111-90-0	3.8E+03	n	4.8E+04	n 3.1E-01	l n	1.3E+00	n 1.2E+03 n		2.4E-01	n	
3.5E+02 C 1.0E-01 C	1.0E-03	Р	V 1	I 0.1	1.1E+05	Diethylormamide	617-84-5 56-53-1	1.6E+01	n	1.2E+03 6.6E-03	0 2 8E-04	5 0	1 2E-04	2.0E+01 n		4.1E-03 2.8E-05	n	
0.02.02 0 1.02 01 0	8.3E-02	0	1	0.1		Difenzoquat	43222-48-6	5.2E+03	n	6.8E+04	n <u>2.02.00</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	1.22 01	1.7E+03 n		2.6E+02	n	
	2.0E-02	1	1	I 0.1		Diflubenzuron	35367-38-5	1.3E+03	n	1.6E+04	n			2.9E+02 n		3.3E-01	n	
		4.0E+01	IV 1		1.4E+03	Difluoroethane, 1,1-	75-37-6	4.8E+04	ns	2.0E+05	nms 4.2E+04	4 n	1.8E+05	n 8.3E+04 n		2.8E+01	n	
4.4E-02 C 1.3E-05 C			V 1		2 3E+03	Dihydrosatrole	94-58-6	9.9E+00	C	4.5E+01	c 2.2E-01		9.4E-01	c 3.0E-01 c		1.9E-04 3.7E-01	C	
	8.0E-02	7.0E-01 r	- V 1		2.3E+03 5.3E+02	Disopropyl Ether	1445-75-6	6.3E+03	ns	9.4E+03 9.3E+04	ns 7.3E+0.	2 11	3. IE+03	1.6F+03 n		4.5E-01	n	
	2.2E-02	0	1	I 0.1		Dimethipin	55290-64-7	1.4E+03	n	1.8E+04	n			4.4E+02 n		9.6E-02	n	
	2.2E-03	0	1	I 0.1		Dimethoate	60-51-5	1.4E+02	n	1.8E+03	n			4.4E+01 n		9.9E-03	n	
1.6E+00 P	0.05.00		1	0.1		Dimethoxybenzidine, 3,3'-	119-90-4	3.4E-01	с	1.4E+00	c			4.7E-02 c		5.8E-05	С	
1.7E-03 P	6.0E-02	Р	1	0.1		Dimethyl methylphosphonate	756-79-6	3.2E+02	C*	1.4E+03	C* 2.2E.00		0.4E-02	4.6E+01 c*		9.6E-03	C*	
5.8E-01 H			1	0.1		Dimethylaniline HCl. 2.4-	21436-96-4	9.4E-01	c	4.0E+00	C 2.2E-03	, c	9.42-03	1.3E-01 c		1.2E-05	c	
2.0E-01 P	2.0E-03	Х	1	0.1		Dimethylaniline, 2,4-	95-68-1	2.7E+00	C*	1.1E+01	С			3.7E-01 c		2.1E-04	С	
2.7E-02 P	2.0E-03	1	V 1	1	8.3E+02	Dimethylaniline, N,N-	121-69-7	2.6E+01	C**	1.2E+02	C*			2.5E+00 c*		9.0E-04	C*	
1.1E+01 P			1	1 0.1	=	Dimethylbenzidine, 3,3'-	119-93-7	4.9E-02	С	2.1E-01	c			6.5E-03 c		4.3E-05	С	
	1.0E-01	P 3.0E-02			1.1E+05	Dimethylformamide	68-12-2	2.6E+03	n	1.5E+04	n 3.1E+0	1 n	1.3E+02	n 6.1E+01 n		1.2E-02	n	
5.5E+02 C 1.6E-01 C	1.0E-04	A 2.0E-00 /	V 1		1.9E+05	Dimethylhydrazine, 1,1-	540-73-8	8.8E-04	c	4.1E-01	c 1.8E-05	5 C	0.0E-03 7.7E-05	c 2.8E-05 c		6.5E-09	C	
	2.0E-02	1	1	I 0.1		Dimethylphenol, 2,4-	105-67-9	1.3E+03	n	1.6E+04	n			3.6E+02 n		4.2E-01	n	
	6.0E-04	1	1	I 0.1		Dimethylphenol, 2,6-	576-26-1	3.8E+01	n	4.9E+02	n			1.1E+01 n		1.3E-02	n	
4 55 00 0 4 05 05 0	1.0E-03	1	1	0.1	175.00	Dimethylphenol; 3;4:	95-65-8	6.3E+01	n	8.2E+02	n		0.45.04	1.8E+01 n		2.1E-02	n	
4.5E-02 C 1.3E-05 C	9 OE 05	v	V 1	01	4.7E+02	Dimethylvinylchloride	513-37-1	1.1E+00 5.1E+00	C	4.8E+00	c 2.2E-01	l C	9.4E-01	c 3.3E-01 c		1.1E-04	C	
	2.0E-03	Î	1	0.1		Dinitro-o-cyclohexyl Phenol 4/6-	131-89-5	1.3E+02	'n	1.6E+03	n			2.3E+01 n		7.7E-01	n	
	1.0E-04	P	1	0.1		Dinitrobenzene, 1,2-	528-29-0	6.3E+00	n	8.2E+01	n			1.9E+00 n		1.8E-03	n	
	1.0E-04	1	1	I 0.1		Dinitrobenzene, 1,3-	99-65-0	6.3E+00	n	8.2E+01	n			2.0E+00 n		1.8E-03	n	
	1.0E-04	P	1	1 0.1		Dinitrobenzene, 1,4-	100-25-4	6.3E+00	n	8.2E+01	n			2.0E+00 n		1.8E-03	n	
6 9E 01 I	2.0E-03	I	1			Dinitrophenul, 2,4-	51-28-5	1.3E+02	n	1.6E+03	n			3.9E+01 n		4.4E-02	n	
3.1F-01 C 8.9F-05 C	2.0E-03	1	1	0.102		Dinitrotoluene 24-	121-14-2	1.7E+00	с*	7.4E+00	c 3.2E-02	2 0	1.4E-01	c 2.4F-01 c		3.2E-04	c	
1.5E+00 P	3.0E-04	х	1	0.099		Dinitrotoluene, 2,6-	606-20-2	3.6E-01	C*	1.5E+00	С			4.9E-02 c		6.7E-05	С	
	2.0E-03	S	1	0.006		Dinitrotoluene, 2 Amino 4,6-	35572-78-2	1.5E+02	n	2.3E+03	n			3.9E+01 n		3.0E-02	n	
1.55 0.1 V	2.0E-03	S	1	0.009		Dinitrotoluene, 4-Amino-2,6-	19406-51-0	1.5E+02	n	2.3E+03	n			3.9E+01 n		3.0E-02	n	
4.5E-01 X	9.0E-04	X	1	0.1		Dinitrotoluene, Technical grade	25321-14-6	1.2E+00 6.3E+01	C*	5.1E+00	c			1.0E-01 C	7.05+00	1.4E-04	C	6 2E 02
1.0E-01 5.0E-06	3.0E-02	I 3.0E-02	IV 1	1 0.1	1.2E+05	Dioxane, 1,4-	123-91-1	5.3E+00	c	2.4E+01	c 5.6E-01	l c*	2.5E+00	c* 4.6E-01 c	7.02100	9.4E-05	c	0.22-02
						Dioxins												
6.2E+03 I 1.3E+00 I	_		1	0.03		~Hexachlorodibenzo-p-dioxin, Mixture		1.0E-04	с	4.7E-04	c 2.2E-06	6 C	9.4E-06	c 1.3E-05 c		1.7E-05	С	
1.3E+05 C 3.8E+01 C	7.0E-10	I 4.0E-08 0	JV 1	0.03		~1CDD, 2,3,7,8-	1746-01-6	4.8E-06	C*	2.2E-05	c* 7.4E-08	s c	3.2E-07	c 1.2E-07 c	3.0E-05	5.9E-08	С	1.5E-05
	3.0E-02 8.0E-04	x	1	0.1		Diphenantia Dinhenyl Sulfone	907-01-7	5.1E+01	n	2.5E+04 6.6E+02	n			5.3E+02 n 1.5E+01 n		3.6E-02	n	
	1.0E-01	0	1	0.1		Diphenylamine	122-39-4	6.3E+03	n	8.2E+04	n			1.3E+03 n		2.3E+00	n	
8.0E-01 2.2E-04			1	0.1		Diphenylhydrazine, 1,2-	122-66-7	6.8E-01	С	2.9E+00	c 1.3E-02	2 C	5.6E-02	c 7.8E-02 c		2.5E-04	С	
745,00 0 4 45 4 5	2.2E-03	1	1	0.1		Diquat Direct Direct 20	85-00-7	1.4E+02	n	1.8E+03	n		0.05.05	4.4E+01 n	2.0E+01	8.3E-01	n	3.7E-01
7.1E+00 C 1.4E-01 C			1	0.1		Direct Black 38	1937-37-7	7.6E-02	C	3.2E-01	C 2.0E-05		8.8E-05	c 1.1E-02 c		5.3E+00	C	
6.7E+00 C 1.4E-01 C			1	0.1		Direct Brown 95	16071-86-6	8.1E-02	c	3.4E-01	c 2.0E-06	5 C	8.8E-05	c 1.2E-02 c		1.6E-01	c	
0	4.0E-05	1	1	0.1		Disulfoton	298-04-4	2.5E+00	n	3.3E+01	n	Ŭ		5.0E-01 n		9.4E-04	n	
	1.0E-02	1	V 1	1		Dithiane, 1,4-	505-29-3	7.8E+02	n	1.2E+04	n			2.0E+02 n		9.7E-02	n	
	2.0E-03	1	1	0.1		Diuron	330-54-1	1.3E+02	n	1.6E+03	n			3.6E+01 n		1.5E-02	n	
	2.0E-02	0	V	0.1		EPTC	2439-10-3	1.3E+03 3.9E+03	n	1.0E+04	n			4.0E+02 n		2.1E+00 4.0E.01	n	
	6.0E-02	ĭ	V 1			Endosulfan	115-29-7	4.7E+02	'n	7.0E+04	n			1.0E+02 n		1.4E+00	n	
	2.0E-02	1	1	0.1		Endothall	145-73-3	1.3E+03	n	1.6E+04	n			3.8E+02 n	1.0E+02	9.1E-02	n	2.4E-02
	3.0E-04	T	1	0.1		Endrin	72-20-8	1.9E+01	n	2.5E+02	n			2.3E+00 n	2.0E+00	9.2E-02	n	8.1E-02
9.9E-03 1.2E-06	6.0E-03	P 1.0E-03			1.1E+04	Epichlorohydrin	106-89-8	1.9E+01	n	8.2E+01	n 1.0E+0	D n	4.4E+00	n 2.0E+00 n		4.5E-04	n	
	4 0E-02	2.0E-02	1 V	0.1	1.5E+04	Epoxyourane, 1,2- Ethanol 2-(2-methoxyothoxy)-	111-77-3	2.5E+03	n	3.3E+04	n 2.1E+0	1 11	0.8E+U1	8 0E+02 p		9.2E-03	n	
	5.0E-02	1	1	0.1		Ethephon	16672-87-0	3.2E+02	n	4.1E+03	n			1.0E+02 n		2.1E-02	n	
	5.0E-04	1	1	I 0.1		Ethion	563-12-2	3.2E+01	n	4.1E+02	n			4.3E+00 n		8.5E-03	n	
	1.0E-01	P 6.0E-02 F	PV 1		2.4E+04	Ethoxyethanol Acetate, 2-	111-15-9	2.6E+03	n	1.4E+04	n 6.3E+0	1 n	2.6E+02	n 1.2E+02 n		2.5E-02	n	
	9.0E-02	P 2.0E-01			1.1E+05	Ethoxyethanol, 2-	110-80-5	5.2E+03	n	4.7E+04	n 2.1E+0	2 n	8.8E+02	n 3.4E+02 n		6.8E-02	n	
	5.0E-01	P 8 0E-03 F			2.5E+03	Ethyl Acrylate	141-78-0	4 7E+01	n	2.0E+03	n 8.3E+0		3.1E+02	n 1.4E+02 n		3.1E-02	n	
	0.02-00									2	0.0210		0.02.01			0.22-00		

Key: I = IRIS; P = PPRTV;	D = DWSHA; no	; O = OPP; A otice) : c = ca	. = ATSDR; C ncer: n = nonc	= Cal EPA; cancer: * = v	X = APPEI vhere: n SI	NDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user gu < 100X c SI : ** = where n SI < 10X c SI : SSI values are based on DAF=1: m = (ide Section 2.3 Concentration r	8.5; L = see use nav exceed cei	er guid ilina lin	e on lead; M hit (See User	= muta Guide	agen; S = se): s = Conce	ee use entratio	er guide Seo on may exc	ction 5; V eed Csa	/ = volatile; R t (See User (: = RBA appli Guide)	ied (See Use	r Guide	for Arsenic
Tox	icity and Cher	nical-specific	Information			Contaminant	oonoonaaaonn	nay execced con	ing in		Galac	Screening	g Leve	els	000 000		5000)	Protection of	Groun	d Water SSLs
SEO A UR	RfD	k RfC	(V		C			Posident Coll		nductrial Coll		Resident Air		ndustrial Ai	ir –	anwater	MCI	Risk-based		MCL-based
(mg/kg-day) ⁻¹ V (ug/m ³) ⁻¹ V	(mg/kg-day)	v (mg/m ³) v	l gen GL	ABS ABS	(mg/kg)	Analyte	CAS No.	(ma/ka)	kev I	(ma/ka)	kev	(un/m ³)	kev	(un/m ³)	kev	(ug/l) kev	(ug/L)	(ma/ka)	kev	(ma/ka)
(1.0E+01	I V	1	2.1E+03	B Ethyl Chloride (Chloroethane)	75-00-3	1.4E+04	ns	5.7E+04	ns	1.0E+04	n	4.4E+04	n 2	.1E+04 n	(3)	5.9E+00	n	(3 3/
	2.0E-01	1	V	1	1.0E+04	Ethyl Ether	60-29-7	1.6E+04	ns	2.3E+05	nms				3	.9E+03 n		8.8E-01	n	
	4.05.05	3.0E-01 F	٧	1	1.1E+03	Ethyl Methacrylate	97-63-2	1.8E+03	ns	7.6E+03	ns	3.1E+02	n	1.3E+03	n 6	.3E+02 n		1.5E-01	n	
1.1E-02 C 2.5E-06 C	1.0E-05 1.0E-01	I 1.0E+00	I V	1 0.1	4.8E+02	Ethylbenzene	2104-64-5	5.8E+00	n C	8.2E+00 2.5E+01	n C	1.1E+00	с	4.9E+00	c 1	5E+00 c	7.0E+02	2.8E-03 1.7E-03	n C	7.8E-01
	7.0E-02	P		1 0.1		Ethylene Cyanohydrin	109-78-4	4.4E+03	n	5.7E+04	n				1	.4E+03 n		2.8E-01	n	
	9.0E-02	Р	V	1	1.9E+05	Ethylene Diamine	107-15-3	7.0E+03	n	1.1E+05	nm				1	.8E+03 n		4.1E-01	n	
	2.0E+00	I 4.0E-01 (2	1 0.1		Ethylene Glycol	107-21-1	1.3E+05	nm	1.6E+06	nm	4.2E+02	n	1.8E+03	n 4	.0E+04 n		8.1E+00	n	
3 1E-01 C 3 0E-03 L	1.0E-01	3 0E-02 (CV M	1 0.1	1 2E+05	Ethylene Giycol Monobutyl Ether	111-76-2 75-21-8	6.3E+03 2.0E-03	n c	8.2E+04 2.5E-02	n c	1.7E+03 3.4E-04	n	7.0E+03 4.1E-03	n 2 c 6	.0E+03 n S7E-04 c		4.1E-01 1.4E-07	n C	
4.5E-02 C 1.3E-05 C	8.0E-05	1		1 0.1	1.22.00	Ethylene Thiourea	96-45-7	5.1E+00	n	5.1E+01	c**	2.2E-01	c	9.4E-01	c 1	.6E+00 n		3.6E-04	n	
6.5E+01 C 1.9E-02 C			V	1	1.5E+05	Ethyleneimine	151-56-4	2.7E-03	С	1.2E-02	С	1.5E-04	С	6.5E-04	c 2	2.4E-04 c		5.2E-08	С	
	3.0E+00	1		1 0.1		Ethylphthalyl Ethyl Glycolate	84-72-0	1.9E+05	nm	2.5E+06	nm				5	.8E+04 n		1.3E+02	n	
	2.5E-04	1		1 0.1		Fenoropathrin	39515-41-8	1.6E+01	n	2.1E+02 2.1E+04	n				6	4E+01 n		2.9E+00	n	
	2.5E-02	i -		1 0.1		Fenvalerate	51630-58-1	1.6E+03	n	2.1E+04	n				5	.0E+02 n		3.2E+02	n	
	1.3E-02	1		1 0.1		Fluometuron	2164-17-2	8.2E+02	n	1.1E+04	n				2	.4E+02 n		1.9E-01	n	
	4.0E-02	C 1.3E-02 (1		Fluoride	16984-48-8	3.1E+03	n	4.7E+04	n	1.4E+01	n	5.7E+01	n 8	.0E+02 n	4.05±02	1.2E+02	n	6 0E±02
	8.0E-02	I 1.3E-02 (, ,	1 0.1		Fluridone	59756-60-4	5.1E+03	n	6.6E+04	n	1.46701		5.7E+01	1	.4E+03 n	4.0E+03	1.6E+02	n	0.0E+02
	1.5E-02	0		1 0.1		Flurprimidol	56425-91-3	9.5E+02	n	1.2E+04	n				2	.6E+02 n		1.2E+00	n	
	2.0E-03	0		1 0.1		Flusilazole	85509-19-9	1.3E+02	n	1.6E+03	n				3	.1E+01 n		5.1E+00	n	
	5.0E-01	0		1 0.1		Flutolarili	69409-94-5	3.2E+04 6.3E+02	n	4.1E+05 8.2E+03	nm				7	.9E+03 n		4.2E+01	n	
	9.0E-02	0		1 0.1		Folpet	133-07-3	5.7E+02	n	7.4E+04	n				2	.6E+03 n		3.9E-01	n	
	2.5E-03	0		1 0.1		Fomesafen	72178-02-0	1.6E+02	n	2.1E+03	n				4	.8E+01 n		1.6E-01	n	
4.05.05.1	2.0E-03	1		1 0.1	4.05.04	Fonofos	944-22-9	1.3E+02	n	1.6E+03	n	0.05.04		0.45.04	2	.4E+01 n		4.7E-02	n	
1.3E-05 I	2.0E-01 9.0E-01	P 3.0F-04)	A V (V	1	4.2E+04 1.1E+05	Formaldenyde Formic Acid	50-00-0 64-18-6	1.7E+01 2.9E+01	C" n	7.3E+01 1.2E+02	C [*]	2.2E-01 3.1E-01	C [*]	9.4E-01 1.3E+00	c ⁻ 4	6.3E-01 C° 6.3E-01 n		8.7E-05 1.3E-04	C^ n	
	2.5E+00	0		1 0.1	1.12.00	Fosetyl-AL	39148-24-8	1.6E+05	nm	2.1E+06	nm	0.12 01		1.02.00	5	.0E+04 n		6.6E+02	n	
						Furans														
	1.0E-03	X	V	1 0.03	6 25 102	~Dibenzofuran	132-64-9	7.3E+01	n	1.0E+03	n				7	.9E+00 n		1.5E-01	n	
	9.0E-03	1 2.0E+00	ı v	1 0.03	1.7E+05	Tetrahydrofuran	109-99-9	1.8E+04	n	9.4E+04	n	2.1E+03	n	8.8E+03	n 3	.4E+03 n		7.5E-03	n	
3.8E+00 H				1 0.1		Furazolidone	67-45-8	1.4E-01	с	6.0E-01	с				2	2.0E-02 c		3.9E-05	с	
4.55.00 0.405.04.0	3.0E-03	1 5.0E-02 H	ΗV	1	1.0E+04	Furfural UUN ELE VV	98-01-1	2.1E+02	n	2.6E+03	n	5.2E+01	n	2.2E+02	n 3	.8E+01 n		8.1E-03	n	
1.5E+00 C 4.3E-04 C 3.0F-02 L 8.6F-06 C				1 0.1		Funum Furmecyclox	531-82-8 60568-05-0	3.6E-01 1.8E+01	с с	1.5E+00 7.7E+01	с с	6.5E-03 3.3E-01	с с	2.9E-02 1.4E+00	C 5	.1E-02 C .1E+00 C		6.8E-05 1.2E-03	с с	
	6.0E-03	0		1 0.1		Glufosinate, Ammonium	77182-82-2	3.8E+02	n	4.9E+03	n				1	.2E+02 n		2.6E-02	n	
		8.0E-05 0		1 0.1		Glutaraldehyde	111-30-8	1.1E+05	nm	4.8E+05	nm	8.3E-02	n	3.5E-01	n					
	4.0E-04	I 1.0E-03 H	ΗV	1	1.1E+05	Glycidyl Churchanger	765-34-4	2.3E+01	n	2.1E+02	n	1.0E+00	n	4.4E+00	n 1	.7E+00 n	7.05102	3.3E-04	n	2 15:00
	1.0E-02	X	V	1 0.1		Guanidine	113-00-8	7.8E+02	n	1.2E+04	n				2	.0E+02 n	7.02102	4.5E-02	n	3.12100
	2.0E-02	Р		1 0.1		Guanidine Chloride	50-01-1	1.3E+03	n	1.6E+04	n				4	.0E+02 n			n	
	3.0E-02	x		1 0.1		Guanidine Nitrate	506-93-4	1.9E+03	n	2.5E+04	n				6	.0E+02 n		1.5E-01	n	
4.5E+00 1.3E-03	5.0E-05 5.0E-04	ł	v	1 0.1		Haloxyrop, Methyl Heptachlor	69806-40-2 76-44-8	3.2E+00 1.3E-01	n c	4.1E+01 6.3E-01	n c	2.2E-03	с	9.4E-03	c 1	.6E-01 n	4.0E-01	8.4E-03 1.2E-04	n C	3.3E-02
9.1E+00 I 2.6E-03 I	1.3E-05	1	V	1		Heptachlor Epoxide	1024-57-3	7.0E-02	C*	3.3E-01	C*	1.1E-03	С	4.7E-03	c 1	.4E-03 c*	2.0E-01	2.8E-05	C*	4.1E-03
	3.0E-04	X 4.0E-01 F	P V	1	5.8E+01	Heptane, N-	142-82-5	2.2E+01	n	2.9E+02	ns	4.2E+02	n	1.8E+03	n 6	.0E+00 n		4.8E-02	n	
	2.0E-03		V	1 0.1		Hexabromobenzene	87-82-1	1.6E+02	n	2.3E+03	n				4	.0E+01 n		2.3E-01	n	
1.6E+00 4.6E-04	2.0E-04 8.0E-04	1	V	1 0.1		Hexachlorobenzene	118-74-1	2.1E-01	c	9.6E-01	c	6.1E-03	с	2.7E-02	c 9	0.8E-03 c	1.0E+00	1.2E-04	c	1.3E-02
7.8E-02 2.2E-05	1.0E-03	Р	V	1	1.7E+01	Hexachlorobutadiene	87-68-3	1.2E+00	c*	5.3E+00	с	1.3E-01	с	5.6E-01	c 1	.4E-01 c*		2.7E-04	с*	
6.3E+00 1.8E-03	8.0E-03	A		1 0.1		Hexachlorocyclohexane, Alpha-	319-84-6	8.6E-02	с	3.6E-01	С	1.6E-03	С	6.8E-03	c 7	.2E-03 c		4.2E-05	С	
1.8E+00 I 5.3E-04 I 1.1E+00 C 3.1E-04 C	3.0E-04	1		1 0.1		Hexachiorocyclohexane, Beta- Hexachiorocyclohexane, Gamma- (Lindane)	319-85-7 58-89-9	3.0E-01 5.7E-01	с с*	1.3E+00 2.5E+00	C C	5.3E-03 9.1E-03	c	2.3E-02 4.0E-02	C 2	2.5E-02 c*	2.0E-01	1.5E-04 2.4E-04	с с*	1.2E-03
1.8E+00 5.1E-04	0.02-04			1 0.1		Hexachlorocyclohexane, Technical	608-73-1	3.0E-01	c	1.3E+00	c	5.5E-03	c	2.4E-02	c 2	2.5E-02 c	2.02-01	1.5E-04	c	
	6.0E-03	I 2.0E-04	V	1	1.6E+01	Hexachlorocyclopentadiene	77-47-4	1.8E+00	n	7.5E+00	n	2.1E-01	n	8.8E-01	n 4	I.1E-01 n	5.0E+01	1.3E-03	n	1.6E-01
4.0E-02 1.1E-05 C	7.0E-04	I 3.0E-02	V	1 0.1		Hexachloroethane	67-72-1	1.8E+00	C*	8.0E+00	C*	2.6E-01	С	1.1E+00	c 3	3.3E-01 c*		2.0E-04	C*	
1.1E-01 I	3.0E-04 3.0E-03	1		1 0.015	5	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	121-82-4	6.1E+00	c*	2.8E+02	c				0	.0E+00 h		2.7E-04	c*	
		1.0E-05	I V	1	3.4E+03	Hexamethylene Diisocyanate, 1,6-	822-06-0	3.1E+00	n	1.3E+01	n	1.0E-02	n	4.4E-02	n 2	2.1E-02 n		2.1E-04	n	
	4.0E-04	P		1 0.1		Hexamethylphosphoramide	680-31-9	2.5E+01	n	3.3E+02	n	7.05.05		0.45.65	8	.0E+00 n		1.8E-03	n	
	2 0E+00	7.0E-01	V	1 01	1.4E+02	Hexane, N-	110-54-3 124-04-9	6.1E+02 1.3E+05	ns	2.5E+03 1.6E+06	ns	7.3E+02	n	3.1E+03	n 1	.5E+03 n .0E+04 n		1.0E+01 9.9E+00	n	
	5.0E-03	I 3.0E-02	V	1	3.3E+03	Hexanone, 2-	591-78-6	2.0E+02	n	1.3E+03	n	3.1E+01	n	1.3E+02	n 3	.8E+01 n		8.8E-03	n	
	3.3E-02	L		1 0.1		Hexazinone	51235-04-2	2.1E+03	n	2.7E+04	n				6	.4E+02 n		3.0E-01	n	
	2.5E-02	0		1 0.1		Hexythiazox	78587-05-0	1.6E+03	n	2.1E+04	n				1	.1E+02 n		5.0E-01	n	
3.0E+00 4.9E-03	1.72-02	3.0E-05 F	v	1 0.1		Hydrazine	302-01-2	2.3E-01	c	1.4E+04	c	5.7E-04	c*	2.5E-03	c* 1	.+E+02 n .1E-03 c*		1.20+05	c*	
3.0E+00 4.9E-03				1		Hydrazine Sulfate	10034-93-2	2.3E-01	с	1.1E+00	с	5.7E-04	с	2.5E-03	c 2	2.6E-02 c			с	
	1.05.05	2.0E-02		1	_	Hydrogen Chloride	7647-01-0	2.8E+07	nm	1.2E+08	nm	2.1E+01	n	8.8E+01	n 4	.2E+01 n			n	
	4.0E-02	C 1.4E-02 (2.0E-03		1		Hydrogen Fluoriae Hydrogen Sulfide	7664-39-3 7783-06-4	3.1E+03 2.8E+06	n	4.7E+04 1.2E+07	n	1.5E+01 2.1E+00	n	6.1E+01 8.8E+00	n 2	.8E+01 n .2E+00 n			n	
6.0E-02 P	4.0E-02	P		1 0.1		Hydroquinone	123-31-9	9.0E+00	С	3.8E+01	С	2.12.00		0.02.00	1	.3E+00 c		8.7E-04	С	
6.1E-02 O	2.5E-03	0		1 0.1		Imazalil	35554-44-0	8.9E+00	c*	3.8E+01	C*				9	0.0E-01 c*		1.5E-02	C*	

Key: I = IRIS; P = PPRT	/; D = DWSH/	A; O = OPP; A	A = ATSDR; (C = Cal EP/	A; X = APF	ENDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user g	juide Section 2.3	3.5; L = see us	er guid	e on lead; M	= muta	igen; S = see	user guide Sec	ction 5; V = volatile; F	R = RBA appl	ied (See User	Guide f	or Arsenic
To	xicity and Che	mical-specific	Information	icancer, -	- where. If	Contaminant	Concentration	nay exceed ce	iiing iin		Guide)	Screening L	evels	eeu Csal (See Osei	Guide)	Protection of	Ground	Water SSLs
k k		K Dro	k v													Risk-based		MCL-based
SFO e IUR e	RfD	e RfCi	e o muta-		C _{sa}		010 N	Resident Soil	. 1	ndustrial Soil	. R	tesident Air	Industrial Ai	r Tapwater	MCL	SSL		SSL
(mg/kg-day)" y (ug/m")")	(mg/kg-day)	y (mg/m°)	y i gen G	ABS AB	3S (mg/i	g) Analyte	CAS NO.	(mg/kg)	кеу	(mg/kg)	кеу	(ug/m°) Ke	y (ug/m°)	key (ug/L) key	(ug/L)	(mg/kg)	кеу	(mg/kg)
	2.5E-01	1		1 0.	.1	Imazaquin	81335-37-7	1.6E+04	n	2.1E+05	nm			4.9E+03 n		2.4E+01	n	
	2.5E+00 1.0E-02	۵ ۵		1 0.	. 1	Indecendpy	7553-56-2	7.8E+02	n	2.1E+00 1.2E+04	n			4.7E+04 II 2.0E+02 n		4.1E+01 1.2E+01	n	
	4.0E-02	î		1 0.	.1	Iprodione	36734-19-7	2.5E+03	'n	3.3E+04	'n			7.4E+02 n		2.2E-01	n	
	7.0E-01	Р		1		Iron	7439-89-6	5.5E+04	n	8.2E+05	nm			1.4E+04 n		3.5E+02	n	
	3.0E-01	1	V	1	1.0E+	04 Isobutyl Alcohol	78-83-1	2.3E+04	ns	3.5E+05	nms			5.9E+03 n		1.2E+00	n	
9.5E-04 I	2.0E-01	I 2.0E+00	С	1 0.	.1	Isophorone	78-59-1	5.7E+02	с*	2.4E+03	C*	2.1E+03 r	8.8E+03	n 7.8E+01 c*		2.6E-02	С*	
	1.5E-02		V	1	4 45	Isopropalin	33820-53-0	1.2E+03	n	1.8E+04	n	0.45.00	0.05.00	4.0E+01 n		9.2E-01	n	
	2.0E+00	P 2.0E-01	PV	1 0	1.161	Jo Isopropanol Isopropul Methyl Phosphonic Acid	1932 54 9	5.6E+03 6.3E+03	n	2.4E+04 9.2E±04	n	2.1E+02 I	8.8E+02	n 4.1E+02 n 2.0E±03 p		8.4E-02	n	
	5.0E-01	1		1 0.	.1	Isoraben	82558-50-7	3.2E+03	n	4 1E+04	n			7.3E+02 n		2.0E+00	n	
	0.02 02	3.0E-01	ΑV	1		JP-7	E1737665	4.3E+08	nm	1.8E+09	nm	3.1E+02 r	1.3E+03	n 6.3E+02 n		2.02.00	n	
	8.0E-03	0		1 0.	.1	Lactofen	77501-63-4	5.1E+02	n	6.6E+03	n			1.0E+02 n		4.6E+00	n	
						Lead Compounds												
5.0E-01 C 1.5E-01 C	2.0E-02	C 2.0E-04	с м с	0.025		~Lead Chromate	7758-97-6	3.0E-01	с	6.2E+00	с	6.8E-06 0	8.2E-05	c 4.1E-02 c			с	
8.5E-03 C 1.2E-05 C	·			1 0	1	~Lead Phosphale	301 04 2	8.2E+01	C	3.8E+02	C	2.3E-01 0	1.0E+00	C 9.1E+00 C		1.95.03	C	
0.0E-00 C 1.2E-00 C	,			1 0.		~Lead and Compounds	7439-92-1	4.0E+02	U	8.0E+02	L	1.5E-01	1.02+00	1.5E+01	1.5E+01	1.02-03	L	1.4E+01
8.5E-03 C 1.2E-05 C)			1 0.	.1	~Lead subacetate	1335-32-6	6.4E+01	с	2.7E+02	с	2.3E-01 0	1.0E+00	c 9.2E+00 c		2.0E-03	с	
	1.0E-07	1	V	1	2.4E+	00 ~Tetraethyl Lead	78-00-2	7.8E-03	n	1.2E-01	n			1.3E-03 n		4.7E-06	n	
	5.0E-06	Р	V	1	3.8E+	D2 Lewisite	541-25-3	3.9E-01	n	5.8E+00	n			9.0E-02 n		3.8E-05	n	
	7.7E-03	0		1 0.	.1	Linuron	330-55-2	4.9E+02	n	6.3E+03	n			1.3E+02 n		1.1E-01	n	
	2.0E-03	P		1 0	1		7439-93-2 94-74 6	1.6E+02 3.2E±01	n	2.3E+03 4.1E+02	n			4.0E+01 n		1.2E+01 2.0E-03	n	
	4.4E-03	0		1 0.	.1	MCPB	94-81-5	2.8E+02	n	3.6E+03	n			6.5E+01 n		2.6E-03	n	
	1.0E-03	1		1 0.	.1	MCPP	93-65-2	6.3E+01	n	8.2E+02	n			1.6E+01 n		4.7E-03	n	
	2.0E-02	1		1 0.	.1	Malathion	121-75-5	1.3E+03	n	1.6E+04	n			3.9E+02 n		1.0E-01	n	
	1.0E-01	I 7.0E-04	С	1 0.	.1	Maleic Anhydride	108-31-6	6.3E+03	n	8.0E+04	n	7.3E-01 r	3.1E+00	n 1.9E+03 n		3.8E-01	n	
	5.0E-01	1		1 0.	.1	Maleic Hydrazide	123-33-1	3.2E+04	n	4.1E+05	nm			1.0E+04 n		2.1E+00	n	
	1.0E-04	Р		1 0.	.1	Malononitrile	109-77-3	6.3E+00	n	8.2E+01	n			2.0E+00 n		4.1E-04	n	
	5.0E-02	1		1 0.	.1	Maneb	12427-38-2	3.2E+02	n	2.5E+04	n			9.8E+01 n		1.0E-01	n	
	1.4E-01	I 5.0E-05	I	1		Manganese (Diet)	7439-96-5	0.22.02		1.12.00				0.02.01 11				
	2.4E-02	S 5.0E-05	1	0.04		Manganese-(Non-diet)	7439-96-5	1.8E+03	n	2.6E+04	n	5.2E-02 r	2.2E-01	n 4.3E+02 n		2.8E+01	n	
	9.0E-05	Н		1 0.	.1	Mephosfolan))	950-10-7	5.7E+00	n	7.4E+01	n			1.8E+00 n		2.6E-03	n	
1 4E 00 D	3.0E-02	I		1 0.	.1	Mepiquat Chloride	24307-26-4	1.9E+03	n	2.5E+04	n			6.0E+02 n		2.0E-01	n	
1.1E-02 P	4.0E-03	Р		1 0.	.1	Mercaptopenzotniazoje, 2-	149-30-4	4.9E+01	C	2.1E+02	C^			6.3E+00 C*		1.8E-02	C.	
	3 0E-04	1 3 0E-04	\$	0.07		~Mercuric Chloride (and other Mercury salts)	7487-94-7	2 3E+01	n	3.5E+02	n	3.1E-01 r	1 3E+00	n 5.7E+00 n	2 0E+00		n	
	0.02-04	3.0E-04	ΪV	1	3.1E+	-Mercury (elemental)	7439-97-6	1.1E+01	ns	4.6E+01	ns	3.1E-01 r	1.3E+00	n 6.3E-01 n	2.0E+00	3.3E-02	n	1.0E-01
	1.0E-04	1		1		~Methyl Mercury	22967-92-6	7.8E+00	n	1.2E+02	n			2.0E+00 n			n	
	8.0E-05	- I		1 0.	.1	~Phenylmercuric Acetate	62-38-4	5.1E+00	n	6.6E+01	n			1.6E+00 n		5.0E-04	n	
	3.0E-05	1	V	1		Merphos	150-50-5	2.3E+00	n	3.5E+01	n			6.0E-01 n		5.9E-02	n	
	1.0E-04	0		1 0.	.1	Merphos Oxide	78-48-8	6.3E+00	n	8.2E+01	n			2.8E-01 n		1.4E-03	n	
	1.0E-02	1 3.0F-02	ΡV	1 0.	4.6F+	Methacrylonitrile U U V	126-98-7	7.5E+00	n	4.9E+04 1.0E+02	n	3.1E+01 r	1.3E+02	n 1.9E+00 n		4.3E-01	n	
	5.0E-05	1	· ·	1 0.	.1	Methamidophos	10265-92-6	3.2E+00	n	4.1E+01	n			1.0E+00 n		2.1E-04	n	
	2.0E+00	I 2.0E+01	I V	1	1.1E+	05 Methanol	67-56-1	1.2E+05	nms	1.2E+06	nms	2.1E+04 r	8.8E+04	n 2.0E+04 n		4.1E+00	n	
	1.5E-03	0		1 0.	.1	Methidathion	950-37-8	9.5E+01	n	1.2E+03	n			2.9E+01 n		7.1E-03	n	
4.05.00 0.4.45.55	2.5E-02			1 0.	.1	Methomyl	16752-77-5	1.6E+03	n	2.1E+04	n	0.05.01	0.05.0	5.0E+02 n		1.1E-01	n	
4.9E-02 C 1.4E-05 C	, 5.0E-03	1		1 0.	1	Methoxy-o-nitroaniline, 2-	99-59-2 72-43-5	1.1E+01 3.2E+02	C	4.7E+01 4.1E+03	C	2.0E-01 (8.8⊑-01	C 1.5E+00 C 3.7E+01 p	4 0E+01	5.3E-04 2.0E+00	C	2 2E+00
	8.0F-03	P 1.0F-03	ΡV	1 0.	1.2E+	05 Methoxyethanol Acetate, 2-	110-49-6	1.1E+02	n	5.1E+02	n	1.0E+00 r	4.4E+00	n 2.1E+00 n	4.02101	4.2E-04	n	2.22.00
	5.0E-03	P 2.0E-02	I V	1	1.1E+	05 Methoxyethanol, 2-	109-86-4	3.3E+02	n	3.5E+03	n	2.1E+01 r	8.8E+01	n 2.9E+01 n		5.9E-03	n	
	1.0E+00	Х	V	1	2.9E+	04 Methyl Acetate	79-20-9	7.8E+04	ns	1.2E+06	nms			2.0E+04 n		4.1E+00	n	
		2.0E-02	PV	1	6.8E+	03 Methyl Acrylate	96-33-3	1.5E+02	n	6.1E+02	n	2.1E+01 r	8.8E+01	n 4.2E+01 n		8.9E-03	n	
105.00	6.0E-01	I 5.0E+00		1	2.8E+	J4 Methyl Ethyl Ketone (2-Butanone)	78-93-3	2.7E+04	n	1.9E+05	nms	5.2E+03 r	2.2E+04	n 5.6E+03 n		1.2E+00	n 0**	
1.0E-03 A	1.0E-03	3 0E+00		1	3.4E-	33 Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	3.3E+04	ne	1.4E+05	nme	3 1E+03 C	1.2E-02	n 6.3E+03 p		1.3E-00 1.4E+00	n	
		1.0E-03	c v	1	1.0E+	04 Methyl Isocyanate	624-83-9	4.6E+00	n	1.9E+01	n	1.0E+00 r	4.4E+00	n 2.1E+00 n		5.9E-04	n	
	1.4E+00	I 7.0E-01	IV	1	2.4E+	03 Methyl Methacrylate	80-62-6	4.4E+03	ns	1.9E+04	ns	7.3E+02 r	3.1E+03	n 1.4E+03 n		3.0E-01	n	
	2.5E-04	1		1 0.	.1	Methyl Parathion	298-00-0	1.6E+01	n	2.1E+02	n			4.5E+00 n		7.4E-03	n	
	6.0E-02	X	цу	1 0.	.1	Methyl Phosphonic Acid	993-13-5	3.8E+03	n	4.9E+04	n	4.05104	1.05.00	1.2E+03 n		2.4E-01	n	
0.05.02 0.2.95.05.0	0.0E-03	r1 4.0E-02	ΠV	1 0	3.9E+	Methyl methanesulfonate	25013-15-4	3.2E+02	11	2.0E+03	ns	4.2E+01 I	1.8E+02	n 2.3E+01 n		3.8E-02	n	
1.8E-03 C 2.6E-07 C		3.0E+00	ΙV	1 0.	8.9F+	3 Methyl tert-Butyl Ether (MTBE)	1634-04-4	4.7E+00	c	2.1E+02	c	1.1E+01 0	4.4E-01	c 1.4E+01 c		3.2E-04	c	
0 2.02 07 0	3.0E-04	X		1 0.	.1	Methyl-1,4-benzenediamine dihydrochloride, 2-	615-45-2	1.9E+01	n	2.5E+02	n			6.0E+00 n		3.6E-03	n	
9.0E-03 P	2.0E-02	Х		1 0.	.1	Methyl-5-Nitroaniline, 2-	99-55-8	6.0E+01	С*	2.6E+02	C*			8.2E+00 c*		4.6E-03	C*	
8.3E+00 C 2.4E-03 C				1 0.	.1	Methyl-N-nitro-N-nitrosoguanidine, N-	70-25-7	6.5E-02	С	2.8E-01	с	1.2E-03 0	5.1E-03	c 9.4E-03 c		3.2E-06	С	
1.3E-01 C 3.7E-05 C	4.05.00			1 0.	.1	Methylaniline Hydrochloride, 2-	636-21-5	4.2E+00	С	1.8E+01	С	7.6E-02 0	3.3E-01	c 6.0E-01 c		2.6E-04	С	
	1.0E-02	A X		1 0.	1	Methylbenzene 1-4-diamine monohydrochloride 2	124-58-3	0.3E+02 1.3E±01	n	8.2E+03 1.6E+02	n			2.0E+02 n		5.8E-02	n	
1.0E-01 X	2.0E-04 3.0E-04	x		1 0.	.1	Methylbenzene-1.4-diamine sulfate, 2-	615-50-9	5.4E+00	C**	2.3E+02	C*			7.8E-01 c**			C**	
2.2E+01 C 6.3E-03 C	;		М	1 0.	.1	Methylcholanthrene, 3-	56-49-5	5.5E-03	С	1.0E-01	С	1.6E-04 d	1.9E-03	c 1.1E-03 c		2.2E-03	С	
2.0E-03 1.0E-08	6.0E-03	I 6.0E-01	IV M	1	3.3E+	03 Methylene Chloride	75-09-2	5.7E+01	C**	1.0E+03	C**	1.0E+02 c*	* 1.2E+03	c** 1.1E+01 c**	5.0E+00	2.9E-03	C**	1.3E-03
1.0E-01 P 4.3E-04 C	2.0E-03	Р	M	1 0.	.1	Methylene-bis(2-chloroaniline), 4,4'-	101-14-4	1.2E+00	С	2.3E+01	C*	2.4E-03 0	2.9E-02	c 1.6E-01 c		1.8E-03	С	

Key: I = IR	15; P = PPRTV;	D = DWSHA n	,; ∪ = OPP; A otice) : c = car	= AISDR; (ncer: n = no	C = Cal E	:PA;X *=wh	a = APPEl here: n SI	NUIX PPRTV SUREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user gui < 100X c SL: ** = where n SL < 10X c SL: SSL values are based on DAF=1: m = 0	oncentration 2.3	5.5; L = see us nav exceed ce	er guio eilina lir	be on lead; I mit (See Use	n = mu r Guid	utagen; S = see le): s = Concen	e user guide S tration may ex	ection 5 xceed C	o; v = volatile; R Sat (See User (: = RBA appli Guide)	ea (See Use	Guide	for Arsenic
	Toxi	city and Che	mical-specific I	Information		**1		Contaminant					. Juid	Screening	Levels				Protection of	Ground	Water SSLs
SEO	k k	RfD	k K	V			C			Posident S-1		Industrial Ca	a	Resident Air	Industrial	Air	Tanwatar	MCI	Risk-based		MCL-based
(mg/kg-day) ⁻¹	e IUR e V (ug/m ³) ⁻¹ V	(mo/ko-dav)	e (mg/m ³) v	l gen (GIABS A	ABS	(mg/kg)	Analyte	CAS No.	(ma/ka)	kev	(ma/ka)	ll kev	(ug/m ³)	ev (ug/m ³)	kev	ug/l) kev	(ug/L)	SSL (ma/ka)	kev	SSL (ma/ka)
4.6E-02	I 1.3E-05 C	() (g /)	1.1.9014	1	0.1	(Methylene-bis(N,N-dimethyl) Aniline, 4,4'-	101-61-1	1.2E+01	c	5.0E+01	c	2.2E-01	c 9.4E-01	1 c	4.8E-01 c	(+3/	2.6E-03	C	(
1.6E+00	C 4.6E-04 C		2.0E-02 C	:	1	0.1		Methylenebisbenzenamine, 4,4'-	101-77-9	3.4E-01	с	1.4E+00	с	6.1E-03	c 2.7E-02	2 C	4.7E-02 c		2.1E-04	с	
			6.0E-04 I		1	0.1		Methylenediphenyl Diisocyanate	101-68-8	8.5E+05	nm	3.6E+06	nm	6.3E-01	n 2.6E+00	0 n					
		7.0E-02	н	V	1	0.1	5.0E+02	Methylstyrene, Alpha-	98-83-9	5.5E+03	ns	8.2E+04	ns				7.8E+02 n		1.2E+00	n	
		2.5E-01	i -		1	0.1		Metribuzin	21087-64-9	1.6E+03	n	2.1E+03	n				4.9E+02 n		1.5E-01	n	
		2.5E-01	1		1	0.1		Metsulfuron-methyl	74223-64-6	1.6E+04	n	2.1E+05	nm				4.9E+03 n		1.9E+00	n	
		3.0E+00	P	V	1		3.4E-01	Mineral oils	8012-95-1	2.3E+05	nms	3.5E+06	nms				6.0E+04 n		2.4E+03	n	
1.8E+01	C 5.1E-03 C	2.0E-04	<u> </u>	V	1	0.4		Mirex	2385-85-5	3.6E-02	С	1.7E-01	С	5.5E-04	c 2.4E-03	3 с	8.8E-04 c		6.3E-04	C	
		2.0E-03 5.0E-03	ł		1	0.1		Molybdenim	2212-07-1 7439-98-7	3.9E+02	n	5.8E+03	n				3.0E+01 n 1.0E+02 n		2.0E+00	n	
		1.0E-01	i		1			Monochloramine	10599-90-3	7.8E+03	n	1.2E+05	nm				2.0E+03 n	4.0E+03	2.02.00	n	
		2.0E-03	Р		1	0.1		Monomethylaniline	100-61-8	1.3E+02	n	1.6E+03	n				3.8E+01 n		1.4E-02	n	
		2.5E-02	I		1	0.1		Myclobutanil	88671-89-0	1.6E+03	n	2.1E+04	n				4.5E+02 n		5.6E+00	n	
		2.0E-04	<u>^</u>	V	1	0.1		Naled	300-76-5	1.9E+01 1.6E+02	n	2.3E+02	n				4.0E+01 n		1.8E-02	n	
		3.0E-02	X 1.0E-01 P	v	1			Naphtha, High Flash Aromatic (HFAN)	64742-95-6	2.3E+03	n	3.5E+04	n	1.0E+02	n 4.4E+02	2 n	1.5E+02 n		1.02 02	n	
1.8E+00	C 0.0E+00 C				1	0.1		Naphthylamine, 2-	91-59-8	3.0E-01	с	1.3E+00	с				3.9E-02 c		2.0E-04	С	
	0.05.04.0	1.2E-01	0		1	0.1		Napropamide	15299-99-7	7.6E+03	n	9.8E+04	n	4 45 00	** 475.00		2.0E+03 n		1.3E+01	n	
	2.6E-04 C	1.1E-02 1.1E-02	C 1.4E-05 C		1	0.1		Nickel Carbonate	3333-67-3	6.7E+02 6.7E+02	n	8.1E+03 8.1E+03	n	1.1E-02 (4.7E-02	2 C**	2.2E+02 n 2.2E+02 n		4.5E-02	n	
	2.6E-04 C	1.1E-02	C 1.4E-05 C	: V	1			Nickel Carbonyl	13463-39-3	8.2E+02	n	1.1E+04	n	1.1E-02	** 4.7E-02	2 C**	2.2E-02 c**			C**	
	2.6E-04 C	1.1E-02	C 1.4E-05 C	:	0.04			Nickel Hydroxide	12054-48-7	8.2E+02	n	1.1E+04	n	1.1E-02	** 4.7E-02	2 C**	2.0E+02 n			n	
	2.6E-04 C	1.1E-02	C 2.0E-05 C		0.04			Nickel Oxide	1313-99-1	8.4E+02	n	1.2E+04	n	1.1E-02 (4.7E-02	2 C**	2.0E+02 n		0.05.07	n	
	2.4E-04 2.6E-04 C	1.1E-02 2.0E-02	0 1.4E-05 C		0.04			Nickel Soluble Salts	E/15532 7440-02-0	8.2E+02 1.5E+03	n	1.1E+04 2.2E+04	n	1.2E-02 (1.1E-02 (5.1E-02	2 C**	2.2E+02 n 3.9E+02 n		3.2E+01 2.6E+01	n	
1.7E+00	C 4.8E-04 I	1.1E-02	C 1.4E-05 C		0.04			Nickel Subsulfide	12035-72-2	4.1E-01	c	1.9E+00	c	5.8E-03 (2.6E-02	2 C**	4.5E-02 c		2.02101	c	
	2.6E-04 C	1.1E-02	C 1.4E-05 C	:	1	0.1		Nickelocene	1271-28-9	6.7E+02	n	8.1E+03	n	1.1E-02 (e** 4.7E-02	2 C**	2.2E+02 n			n	
		1.6E+00	I		1			Nitrate	14797-55-8	1.3E+05	nm	1.9E+06	nm				3.2E+04 n	1.0E+04		n	
		1.05.01			1			Nitrate + Nitrite (as N)	E701177	7.051.02		1.05+05					2.0E102 p	1.0E+04			
		1.0E-01	X 5.0F-05 X		1	0.1		Nitroaniline. 2-	88-74-4	6.3E+02	n	8.0F+03	n	5.2E-02	n 2.2E-01	1 n	1.9E+02 n	1.0E+03	8.0E-02	n	
2.0E-02	Р	4.0E-03	P 6.0E-03 P		1	0.1		Nitroaniline, 4-	100-01-6	2.7E+01	C**	1.1E+02	C*	6.3E+00	n 2.6E+0	1 n	3.8E+00 c*		1.6E-03	C*	
	4.0E-05 I	2.0E-03	I 9.0E-03 I	V	1		3.1E+03	Nitrobenzene (/) (/)	98-95-3	5.1E+00	C*	2.2E+01	C*	7.0E-02	c 3.1E-01	1 C	1.4E-01 c*		9.2E-05	C*	
		3.0E+03	P		1	0.1			9004-70-0	1.9E+08	nm	2.5E+09	nm				6.0E+07 n		1.3E+04	n	
1.3E+00	C 37E-04 C	7.0E-02	п		1	0.1		Nitrofurazone	59-87-0	4.4E+03	0	1.8E+00	0	7.6E-03	c 3.3E-02	2 0	6.0E-02 C		5.4E-05	0	
1.7E-02	P	1.0E-04	Р		1	0.1		Nitroglycerin	55-63-0	6.3E+00	n	8.2E+01	n	1.02 00	0 0.02 01		2.0E+00 n		8.5E-04	n	
		1.0E-01	1		1	0.1		Nitroguanidine	556-88-7	6.3E+03	n	8.2E+04	n				2.0E+03 n		4.8E-01	n	
	8.8E-06 P		5.0E-03 P	v	1		1.8E+04	Nitromethane	75-52-5	5.4E+00	C*	2.4E+01	C*	3.2E-01	c* 1.4E+00	0 c*	6.4E-01 c*		1.4E-04	C*	
2.7E+01	C 7.7E-03 C		2.0E-02 I	V M	1	0.1	4.9E+03	Nitroso-N-ethylurea N-	79-46-9	1.4E-02 4.5E-03	C C	6.0E-02 8.5E-02	с с	1.3E-04	c 4.5E-03	с 3 с	2.1E-03 C 9.2E-04 C		5.4E-07 2.2E-07	с с	
1.2E+02	C 3.4E-02 C			M	1	0.1		Nitroso-N-methylurea, N-	684-93-5	1.0E-03	c	1.9E-02	c	3.0E-05	c 3.6E-04	4 C	2.1E-04 c		4.6E-08	c	
5.4E+00	I 1.6E-03 I			V	1			Nitroso-di-N-butylarhine, N	924-16-3	9.9E-02	с	4.6E-01	С	1.8E-03	c 7.7E-03	3 с	2.7E-03 c		5.5E-06	С	
7.0E+00	1 2.0E-03 C				1	0.1		Nitroso-di-N-propylamine, N-	621-64-7	7.8E-02	С	3.3E-01	С	1.4E-03	c 6.1E-03	3 c	1.1E-02 c		8.1E-06	c	
2.8E+00 1.5E+02	1 8.0E-04 C			м	1	0.1		Nitrosodiethylamine, N-	55-18-5	8 1E-04	C C	8.2E-01 1.5E-02	C C	3.5E-03 2.4E-05	c 2.9E-04	2 C 1 C	2.8E-02 C		5.6E-06 6.1E-08	C C	
5.1E+01	I 1.4E-02 I	8.0E-06	P 4.0E-05 X	VM	1	••••	2.4E+05	Nitrosodimethylamine, N-	62-75-9	2.0E-03	c	3.4E-02	c	7.2E-05	c 8.8E-04	4 C	1.1E-04 c		2.7E-08	c	
4.9E-03	I 2.6E-06 C				1	0.1		Nitrosodiphenylamine, N-	86-30-6	1.1E+02	С	4.7E+02	С	1.1E+00	c 4.7E+00	0 с	1.2E+01 c		6.7E-02	С	
2.2E+01 6.7E+00	I 6.3E-03 C			V	1	0.1	1.1E+05	Nitrosomethylethylamine, N-	10595-95-6	2.0E-02 9.1E-02	С	9.1E-02	c	4.5E-04	c 1.9E-03	3 C	7.1E-04 c		2.0E-07	C	
9.4E+00	C 2.7E-03 C				1	0.1		Nitrosopiperidine [N-]	100-75-4	5.8E-02	c	2.4E-01	C	1.0E-03	c 4.5E-03	3 6	8.2E-02 C		4.4E-06	c	
2.1E+00	I 6.1E-04 I				1	0.1		Nitrosopyrrolidine, N-	930-55-2	2.6E-01	c	1.1E+00	с	4.6E-03	c 2.0E-02	2 C	3.7E-02 c		1.4E-05	с	
0.05.51		1.0E-04	X		1	0.1	1.55	Nitrotoluene, m-	99-08-1	6.3E+00	n	8.2E+01	n				1.7E+00 n		1.6E-03	n	
2.2E-01 1.6E-02	P	9.0E-04	P	v	1	0.1	1.5E+03	Nitrotoluene, o-	88-72-2	3.2E+00 3.4E+01	C*	1.5E+01 1.4E+02	C*				3.1E-01 C*		3.0E-04 4.0E-03	C*	
1.02-02		3.0E-03	X 2.0E-02 P	v	1	0.1	6.9E+00	Nonane, n-	111-84-2	1.1E+01	ns	7.2E+01	ns	2.1E+01	n 8.8E+0	1 n	5.3E+00 n		7.5E-02	n	
		1.5E-02	0		1	0.1		Norflurazon	27314-13-2	9.5E+02	n	1.2E+04	n				2.9E+02 n		1.9E+00	n	
		3.0E-03	1		1	0.1		Octabromodiphenyl Ether	32536-52-0	1.9E+02	n	2.5E+03	n				6.0E+01 n		1.2E+01	n	
		5.0E-02			1 0	0.1		Octanyoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	2691-41-0	3.9E+03	n	5.7E+04	n				1.0E+03 n		1.3E+00	n	
7.8E-03	0	1.4E-01	0		1	0.1		Oryzalin	19044-88-3	7.0E+02	c	2.9E+02	c				7.9E+00 c		1.5E-03	c	
		5.0E-03	1		1	0.1		Oxadiazon	19666-30-9	3.2E+02	n	4.1E+03	n				4.7E+01 n		4.8E-01	n	
		2.5E-02	1		1	0.1		Oxamyl	23135-22-0	1.6E+03	n	2.1E+04	n				5.0E+02 n	2.0E+02	1.1E-01	n	4.4E-02
7.3E-02	0	3.0E-02 1.3E-02	0		1	0.1		Oxyfluorfen Paclobutrazol	42874-03-3	7.4E+00 8.2E+02	C	3.1E+01 1.1E+04	C				5.4E-01 c 2.3E+02 p		4.3E-02 4.6E-01	C	
		4.5E-02	1		1	0.1		Paraguat Dichloride	1910-42-5	2.8E+02	n	3.7E+03	n				9.0E+01 n		1.2E+00	n	
		6.0E-03	н		1	0.1		Parathion	56-38-2	3.8E+02	n	4.9E+03	n				8.6E+01 n		4.3E-01	n	
		5.0E-02	Н	V	1			Pebulate	1114-71-2	3.9E+03	n	5.8E+04	n				5.6E+02 n		4.5E-01	n	
		3.0E-02	0	V	1	0.1	3 15 01	Pendimethalin Pantakromodiahanyi Ethar	40487-42-1	1.9E+03	n	2.5E+04	n				1.4E+02 n		1.6E+00	n	
		2.0E-03 1.0E-04	i	V	1	0.1	3.1E-01	Pentabromodiphenyl ether, 2,2',4,4',5- (BDE-99)	60348-60-9	6.3E+02	n	2.3E+03 8.2E+01	ns				2.0E+00 n		8.7E-02	n	
		8.0E-04	1	V	1			Pentachlorobenzene	608-93-5	6.3E+01	n	9.3E+02	n				3.2E+00 n		2.4E-02	n	
9.0E-02	P	0.05.55		V	1		4.6E+02	Pentachloroethane	76-01-7	7.7E+00	С	3.6E+01	С				6.5E-01 c		3.1E-04	С	
2.6E-01	H	3.0E-03		V	1	0.25		Pentachioronitrobenzene	82-68-8	2.7E+00	C*	1.3E+01	C	5 5E 01	0 24510	0 0	1.2E-01 C	1.05+00	1.5E-03	C	1 45 02
4.01-01	1 J.IL-00 C	0.00-00				0.20		r childeniorophenor	01-00-0	1.02.00	0	+.02.00	0	3.3L-01	2.42700	0 0	IL-02 C	1.02100	0.72-00	0	1.42-00

Key: I = IRIS; P = PPRIV;	D = DWSHA	(; O = OPP; A otice) : c = ca	A = ATSDR; (ancer: n = no	C = Cal E	EPA; X * * = wh	= APPEN ere: n Sl	IDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user < 100X c SI *** = where n SI < 10X c SI * SSI values are based on DAE=1; m :	guide Section 2.3 = Concentration r	3.5; L = see u may exceed o	ser guio eilina lin	de on lead; M mit (See Liser	1 = mut Guide	tagen; S = se	e user guid	de Secti av excer	ion 5; V = volatile; F ed Csat (See User (t = RBA appl Suide)	ied (See User	Guide f	or Arsenic
Тохі	city and Cher	mical-specific	Information	nearicer,		CIC. II OL	Contaminant	- concentration i		ciing in	1111 (000 0301	Guide	Screening	g Levels	IY CAUCE		Suide)	Protection of	Ground	Water SSLs
K K K	, D(D	K DFC	k v			0							Desident Air			_		Risk-based		MCL-based
SFU e IUR e	RID _o	e RIC _i	e o muta-		ARS	(ma/ka)	Analyte	CAS No.	Resident So	ll kov	Industrial Sol	kov	(ug/m ³)	Indust	(m ³)	lapwater	MCL (ug/L)	SSL (ma/ka)	kov	SSL (ma/ka)
4.0E-03 X	2 0E-03	y (mg/m)	y i gen d	1	0.1	(IIIg/kg)	Pentaerythritol tetranitrate (PETN)	78-11-5	(IIIg/kg) 1 3E+02	n	5 7E+02	C**	(ug/III)	key (ug	ynn)	1 9E+01 c**	(ug/L)	2.8E-02	C**	(IIIg/kg)
4.02-00 X	2.02-00	1.0E+00	ΡV	1	0.1	3.9E+02	Pentane, n-	109-66-0	8.1E+02	ns	3.4E+03	ns	1.0E+03	n 4.48	E+03	n 2.1E+03 n		1.0E+01	n	
							Perchlorates													
	7.0E-04	Į.		1			~Ammonium Perchlorate	7790-98-9	5.5E+01	n	8.2E+02	n				1.4E+01 n			n	
	7.0E-04	1		1			~Lithium Perchlorate	7791-03-9	5.5E+01	n	8.2E+02	n				1.4E+01 n			n	
	7.0E-04	-		1			~Perchlorate and Perchlorate Salts	14797-73-0	5.5E+01	n	8.2E+02	n				1.4E+01 n	1.5E+01(F)		n	
	7.0E-04 7.0E-04	i		1			~Potassium Perchiorate	7601-89-0	5.5E+01 5.5E+01	n	8.2E+02 8.2E+02	n				1.4E+01 n 1.4F+01 n			n	
	2.0E-02	P		1	0.1		Perfluorobutane sulfonic acid (PFBS)	375-73-5	1.3E+03	n	1.6E+04	n				4.0E+02 n		1.3E-01	n	
	2.0E-02	Р		1	0.1		Perfluorobutanesulfonate	45187-15-3	1.3E+03	n	1.6E+04	n				4.0E+02 n		1.3E-01	n	
	5.0E-02	1		1	0.1		Permethrin	52645-53-1	3.2E+03	n	4.1E+04	n				1.0E+03 n		2.4E+02	n	
2.2E-03 C 6.3E-07 C	0.45.04	~		1	0.1		Phenacetin	62-44-2	2.5E+02	С	1.0E+03	С	4.5E+00	c 1.98	E+01	c 3.4E+01 c		9.7E-03	с	
	2.4E-01 3.0E-01	U 2 0E-01	c	1	0.1		Phenol	13684-63-4	1.5E+04 1.9E+04	n	2.0E+05 2.5E+05	nm	2 1E+02	n 8.8	E+02	3.8E+03 n		2.1E+01 3.3E+00	n	
	4.0E-03	1 2.02-01	0	1	0.1		Phenol. 2-(1-methylethoxy)-, methylcarbamate	114-26-1	2.5E+02	n	3.3E+03	n	2.12.02	11 0.00	2.02	7.8E+01 n		2.5E-02	n	
	5.0E-04	x		1	0.1		Phenothiazine	92-84-2	3.2E+01	n	4.1E+02	n				4.3E+00 n		1.4E-02	n	
	2.0E-04	Х	V	1		1.3E+02	Phenyl Isothiocyanate	103-72-0	1.6E+01	n	2.3E+02	ns				2.6E+00 n		1.7E-03	n	
	6.0E-03	1		1	0.1		Phenylenediamine, m-	108-45-2	3.8E+02	n	4.9E+03	n				1.2E+02 n		3.2E-02	n	
1.2E-01 P	4.0E-03	P		1	0.1		Phenylenediamine, o-	95-54-5	4.5E+00	C*	1.9E+01	С				6.5E-01 c		1.7E-04	C	
1.9E-03	1.0E-03	^		1	0.1		Phenylohanol 2-	90-43 7	0.3E+01	0	0.2E+02	0				2.0E+01 n		3.4E-03	0	
1.52-05 11	2.0E-04	н		1	0.1		Phorate	298-02-2	1.3E+01	n	1.6E+02	n				3.0E+00 n		3.4E-03	n	
		3.0E-04	IV	1		1.6E+03	Phosgene	75-44-5	3.1E-01	n	1.3E+00	n	3.1E-01	n 1.38	E+00	n				
	2.0E-02	T		1	0.1		Phosmet	732-11-6	1.3E+03	n	1.6E+04	n				3.7E+02 n		8.2E-02	n	
		_					Phosphates, Inorganic													
	4.9E+01	P		1			~Auuminum metaphosphate	13776-88-0	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01 4.9E+01	P		1			~Calcium pyrophosphate	7790-76-3	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Diammonium phosphate	7783-28-0	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Dicalcium phosphate	7757-93-9	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Dimagnesium phosphate	7782-75-4	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Dipotassium phosphate	7758-11-4	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01 4.9E+01	P		1			~Disodium phosphate	12530-50-2	3.8E+06	nm	5.7E+07	nm				9.7E+05 n 9.7E+05 n			n	
	4.9E+01	P		1			~Monoammonium phosphate)) 41 // //	7722-76-1	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Monocalcium phosphate	7758-23-8	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Monomagnesium phosphate	7757-86-0	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Monopotassium phosphate	7778-77-0	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Monosodium phosphate	7558-80-7	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01 4.9E+01	P		1			~Potassium tripolyphosphate	13845-36-8	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Sodium acid pyrophosphate	7758-16-9	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Sodium aluminum phosphate (acidic)	7785-88-8	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Sodium aluminum phosphate (anhydrojus) // common	10279-59-1	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Sodium aluminum phosphate (tetrahydrate)	10305-76-7	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Sodium polyphosphate	68915-31-1	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			'n	
	4.9E+01	Р		1			~Sodium trimetaphosphate	7785-84-4	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Sodium tripolyphosphate	7758-29-4	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Tetrapotassium phosphate	7320-34-5	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~ retrasodium pyrophosphate	7722-88-5	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Tricalcium phosphate	7758-87-4	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Trimagnesium phosphate	7757-87-1	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	Р		1			~Tripotassium phosphate	7778-53-2	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	4.9E+01	P		1			~Trisodium phosphate	7601-54-9	3.8E+06	nm	5.7E+07	nm				9.7E+05 n			n	
	3.0E-04	I 3.0E-04	IV	1			Phospharia Acid	7803-51-2	2.3E+01	n	3.5E+02	n	3.1E-01	n 1.3E	E+00	n 5.7E-01 n			n	
	4.9E+01 2.0E-05	F 1.0E-02	v	1			Phosphorus, White	7723-14-0	1.6E+00	n	2.3E+07	n	1.02+01	11 4.41	L+01	4.0F-01 n		1.5E-03	n	
							Phthalates													
1.4E-02 I 2.4E-06 C	2.0E-02	1		1	0.1		~Bis(2-ethylhexyl)phthalate	117-81-7	3.9E+01	C*	1.6E+02	с	1.2E+00	c 5.18	E+00	c 5.6E+00 c*	6.0E+00	1.3E+00	C*	1.4E+00
1.9E-03 P	2.0E-01	1		1	0.1		~Butyl Benzyl Phthalate	85-68-7	2.9E+02	C*	1.2E+03	С				1.6E+01 c		2.4E-01	С	
	1.0E+00			1	0.1		~Butylphthalyl Butylglycolate	85-70-1	6.3E+04	n	8.2E+05	nm				1.3E+04 n		3.1E+02	n	
	8.0E-01	1		1	0.1		~Diethyl Phthalate	84-66-2	5.1E+03	n	6.6E+05	nm				9.0E+02 h 1.5E+04 h		2.3E+00 6.1E+00	n	
	1.0E-01	1	V	1			~Dimethylterephthalate	120-61-6	7.8E+03	n	1.2E+05	nm				1.9E+03 n		4.9E-01	n	
	1.0E-02	Р		1	0.1		~Octyl Phthalate, di-N-	117-84-0	6.3E+02	n	8.2E+03	n				2.0E+02 n		5.7E+01	n	
	1.0E+00	Н		1	0.1		~Phthalic Acid, P-	100-21-0	6.3E+04	n	8.2E+05	nm				1.9E+04 n		6.8E+00	n	
	2.0E+00	I 2.0E-02	С	1	0.1		~Phthalic Anhydride	85-44-9	1.3E+05	nm	1.6E+06	nm	2.1E+01	n 8.8	E+01	n 3.9E+04 n	5.05.00	8.5E+00	n	1 45 04
	1.0E-02	x		1	0.1		Picramic Acid (2-Amino-4.6-dinitrophenol)	96-91-3	4.4E+03 6.3E+00	n	5.7E+04 8.2E+01	n				2.0F+00 n	5.0E+02	3.8E-01 1.3E-03	n	1.4E-01
	9.0E-04	X		1	0.1		Picric Acid (2,4,6-Trinitrophenol)	88-89-1	5.7E+01	n	7.4E+02	n				1.8E+01 n		8.4E-02	n	
	6.7E-05	0		1	0.1		Pirimiphos, Methyl	29232-93-7	4.2E+00	n	5.5E+01	n				8.1E-01 n		7.7E-04	n	
3.0E+01 C 8.6E-03 C	7.0E-06	Н		1	0.1		Polybrominated Biphenyls	59536-65-1	1.8E-02	C*	7.7E-02	C*	3.3E-04	c 1.4	E-03	c 2.6E-03 c*			C*	
7.05.00 0.005.05.0	7 05 05		V	1	0.14		Polychlorinated Biphenyls (PCBs)	10674 44 0	4.45.00		0.75.04		1 45 04		E 04	0 0 05 04 44		0.45.00	0.11	
1.0E-02 5 2.0E-05 S	1.UE-UD		v		U. 14			12074-11-2	4.1E+00	- 11	2.12+01	C	1.46-01	0.1	L-01	6 2.2E-01 C**		2.1E-02	0	

Key: I = IRIS;	; P = PPRTV;	D = DWSHA	(; O = OPP; A	= ATSDR; C =	= Cal EPA	X = APPE	NDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user gu	uide Section 2.3	3.5; L = see us	ser gui	de on lead; M :	= mutagen; S = s	see use	er guide Sectio	n 5; V = volatile; I	R = RBA appl	ied (See User C	Guide for Arsenic
	Тохі	city and Che	mical-specific I	nformation	ancer, =	where. It of	Contaminant	Concentration	nay exceed ce	cilling ill		Screenii	ng Leve	els	Coal (See Osei	Guide)	Protection of G	Ground Water SSLs
SFO e	k IUR e	RfD	k k e RfC _i e	v o muta-		Cent			Resident Soil		Industrial Soil	Resident Ai	ir	Industrial Air	Tapwater	MCI	Risk-based SSI	MCL-based SSI
(mg/kg-day) ⁻¹ y	(ug/m ³) ⁻¹ y	(mg/kg-day)	y (mg/m ³) y	I gen GIA	ABS ABS	6 (mg/kg)	Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key (ug/m ³)	key	(ug/m ³) k	ey (ug/L) key	(ug/L)	(mg/kg)	key (mg/kg)
2.0E+00 S	5.7E-04 S			V	0.14	1	~Aroclor 1221	11104-28-2	2.0E-01	с	8.3E-01	c 4.9E-03	С	2.1E-02	c 4.7E-03 c		8.0E-05	c
2.0E+00 S	5.7E-04 S			v	I 0.14	+ 1	~Arocior 1232 ~Arocior 1242	53469-21-9	2.3E-01	c c	9.5E-01	c 4.9E-03	c c	2.1E-02 2.1E-02	c 7.8E-03 c		8.0E-05 1.2E-03	c
2.0E+00 S	6 5.7E-04 S			V ć	1 0.14	1	~Aroclor 1248	12672-29-6	2.3E-01	с	9.5E-01	c 4.9E-03	с	2.1E-02	c 7.8E-03 c		1.2E-03	С
2.0E+00 S	5 5.7E-04 S	2.0E-05	1	V ·	1 0.14 1 0.14	1 1	~Aroclor 1254	11097-69-1	2.4E-01 2.4E-01	C**	9.7E-01	c* 4.9E-03	c	2.1E-02 2.1E-02	c 7.8E-03 c*		2.0E-03	C*
2.02.00 0	0.12 01 0	6.0E-04	Х	v ·	0.14	1	~Aroclor 5460	11126-42-4	3.5E+01	n	4.4E+02	n	Ŭ	2.12.02	1.2E+01 n		2.0E+00	n
3.9E+00 E	1.1E-03 E	2.3E-05	E 1.3E-03 E	V ·	0.14	1	~Heptachlorobiphenyl, 2,3,3',4,4',5,5'- (PCB 189)	39635-31-9 52663 72 6	1.3E-01	C*	5.2E-01	c* 2.5E-03	c	1.1E-02	c 4.0E-03 c		2.8E-03	c
3.9E+00 E	1.1E-03 E	2.3E-05 2.3E-05	E 1.3E-03 E	v v	0.14	• •	~Hexachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 167)	69782-90-7	1.2E-01 1.2E-01	с*	5.0E-01	c* 2.5E-03	c	1.1E-02 1.1E-02	c 4.0E-03 c		1.7E-03	c
3.9E+00 E	1.1E-03 E	2.3E-05	E 1.3E-03 E	V ·	0.14	ļ	~Hexachlorobiphenyl, 2,3,3',4,4',5- (PCB 156)	38380-08-4	1.2E-01	C*	5.0E-01	c* 2.5E-03	С	1.1E-02	c 4.0E-03 c		1.7E-03	С
3.9E+03 E 3.9E+00 E	1.1E+00 E	2.3E-08 2.3E-05	E 1.3E-06 E E 1.3E-03 E	V ·	1 0.14 1 0.14	1	∼Hexachlorobiphenyl, 3,3',4,4',5,5'- (PCB 169) ∼Pentachlorobiphenyl, 2',3,4,4',5- (PCB 123)	32774-16-6 65510-44-3	1.2E-04 1.2E-01	с* с*	5.1E-04 4.9E-01	c* 2.5E-06 c* 2.5E-03	с с	1.1E-05 1.1E-02	c 4.0E-06 c c 4.0E-03 c		1.7E-06 1.0E-03	c
3.9E+00 E	1.1E-03 E	2.3E-05	E 1.3E-03 E	V	0.14	1	~Pentachlorobiphenyl, 2,3',4,4',5- (PCB 118)	31508-00-6	1.2E-01	C*	4.9E-01	c* 2.5E-03	c	1.1E-02	c 4.0E-03 c		1.0E-03	c
3.9E+00 E	1.1E-03 E	2.3E-05	E 1.3E-03 E	V	0.14	1	~Pentachlorobiphenyl, 2,3,3',4,4'- (PCB 105)	32598-14-4	1.2E-01	C*	4.9E-01	c* 2.5E-03	с	1.1E-02	c 4.0E-03 c		1.0E-03	c
1.3E+00 E	3.8E+00 E	2.3E-05 7.0E-09	E 4.0E-07 E	V	0.14	+	~Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114) ~Pentachlorobiphenyl, 3,3',4,4',5- (PCB 126)	57465-28-8	3.6E-05	с*	1.5E-04	c* 2.5E-03	C C	3.2E-06	c 1.2E-03 c		3.0E-03	c
2.0E+00 I	5.7E-04 I			V f	0.14	1	~Polychlorinated Biphenyls (high risk)	1336-36-3	2.3E-01	с	9.4E-01	c 4.9E-03	с	2.1E-02	с	5.0E-01		· · · · · · · · · · · · · · · · · · ·
4.0E-01 I	1.0E-04 I			V A	0.14	1	~Polychlorinated Biphenyls (low risk)	1336-36-3				2.8E-02	C	1.2E-01 6.1E-01	c 4.4E-02 c	5.0E-01	6.8E-03	c 7.8E-02
1.3E+01 E	E 3.8E-03 E	7.0E-06	E 4.0E-04 E	• •	0.14	1	~Tetrachlorobiphenyl, 3,3',4,4'- (PCB 77)	32598-13-3	3.8E-02	с*	1.6E-01	c* 7.4E-04	c	3.2E-03	c 6.0E-03 c*	3.02-01	9.4E-04	C*
3.9E+01 E	1.1E-02 E	2.3E-06	E 1.3E-04 E	V -	0.14	1	~Tetrachlorobiphenyl, 3,4,4',5- (PCB 81)	70362-50-4	1.2E-02	С*	4.8E-02	c* 2.5E-04	С	1.1E-03	c 4.0E-04 c		6.2E-05	С
			6.0E-04 I	Ĩ	I 0.1		Polymeric Methylene Dipnenyl Dilsocyanate (PMDI) Polynuclear Aromatic Hydrocarbons (PAHs)	9016-87-9	8.5E+05	nm	3.6E+06	nm 6.3E-01	n	2.6E+00	n			
		6.0E-02	1	V f	0.13	3	~Acenaphthene	83-32-9	3.6E+03	n	4.5E+04	n			5.3E+02 n		5.5E+00	n
105.01 5		3.0E-01	1	V	0.1	3	~Anthracene	120-12-7	1.8E+04	n	2.3E+05	nm		2.05.01	1.8E+03 n		5.8E+01	n
1.2E+00 C	C 1.1E-04 C			V IVI	0.1	3	~Benzo(j)fluoranthene	205-82-3	4.2E-01	c c	2.1E+01 1.8E+00	c 2.6E-02	c c	2.0E-01 1.1E-01	c 6.5E-02 c		7.8E-02	C
1.0E+00 I	6.0E-04 I	3.0E-04	I 2.0E-06 I	M	1 0.13	3	~Benzo[a]pyrene	50-32-8	1.1E-01	С	2.1E+00	c 1.7E-03	C**	8.8E-03	n 2.5E-02 c	2.0E-01	2.9E-02	c 2.4E-01
1.0E-01 E 1.0E-02 E	6.0E-05 E			M	0.1	3	~Benzo[b]fluoranthene ~Benzo[k]fluoranthene	205-99-2	1.1E+00 1.1E+01	C C	2.1E+01 2.1E+02	c 1.7E-02	C C	2.0E-01 2.0E+00	c 2.5E-01 c		3.0E-01 2.9E+00	c
1.02.02 2	0.02 00 2	8.0E-02	1	V *	0.1	3	~Chloronaphthalene, Beta-	91-58-7	4.8E+03	n	6.0E+04	n		2.02.00	7.5E+02 n		3.9E+00	n
1.0E-03 E	6.0E-07 E			M	0.1	3	~Chrysene	218-01-9	1.1E+02	с	2.1E+03	c 1.7E+00	С	2.0E+01	c 2.5E+01 c		9.0E+00	С
1.0E+00 E	C 1.1E-03 C			IVI	0.1	3	~Dibenzo(a,e)pyrehe	192-65-4	4.2E-02	C C	2.1E+00 1.8E-01	c 2.6E-03	C C	2.0E-02	c 6.5E-02 c		9.6E-02 8.4E-02	c
2.5E+02 C	7.1E-02 C			M	0.1	3	~Dimethylbenz(a)anthracene, 7,12-	57-97-6	4.6E-04	c	8.4E-03	c 1.4E-05	c	1.7E-04	c 1.0E-04 c		9.9E-05	c
		4.0E-02	1	V ·	0.1	3		/ 206-44-0	2.4E+03	n	3.0E+04	n			8.0E+02 n		8.9E+01	n
1.0E-01 E	6.0E-05 E	4.02-02	'	м ́	0.1	3	~Indeno[1,2,3-cd]pyrene	193-39-5	1.1E+00	c	2.1E+01	c 1.7E-02	с	2.0E-01	c 2.5E-01 c		9.8E-01	c
2.9E-02 P)	7.0E-02	A	V	0.1	3 3.9E+02	~Methylnaphthalene, 1-	90-12-0	1.8E+01	с	7.3E+01	с			1.1E+00 c		6.0E-03	c
	3.4E-05 C	4.0E-03 2.0E-02	I 3.0E-03 I	v	0.1	3	~Methylnaphtialerie, 2-	91-57-6	2.4E+02 3.8E+00	n c*	3.0E+03 1.7E+01	c* 8.3E-02	c*	3.6E-01	3.6E+01 n		5.4E-01	n c*
1.2E+00 C	C 1.1E-04 C				I 0.13	3	~Nitropyrene, 4-	57835-92-4	4.2E-01	С	1.8E+00	c 2.6E-02	С	1.1E-01	c 1.9E-02 c		3.3E-03	С
		3.0E-02		V	0.1	3	~Pyrene	129-00-0	1.8E+03	n	2.3E+04	n			1.2E+02 n		1.3E+01	n
1.5E-01 I		9.0E-02	r I		1 0.1		Prochloraz	67747-09-5	3.6E+00	c	1.5E+01	c			3.8E-01 c		1.9E-03	c
		6.0E-03	Н	V	1		Profluralin	26399-36-0	4.7E+02	n	7.0E+03	n			2.6E+01 n		1.6E+00	n
		1.5E-02 4.0E-02	0		I 0.1 I 0.1		Prometon Prometryn	1610-18-0 7287-19-6	9.5E+02 2.5E+03	n	1.2E+04 3.3E+04	n n			2.5E+02 n 6.0E+02 n		1.2E-01 9.0E-01	n
		1.3E-02	Î.		1 0.1		Propachlor	1918-16-7	8.2E+02	n	1.1E+04	n			2.5E+02 n		1.5E-01	n
3.3E-02)	5.0E-03 4.0E-02	0		0.1		Propanil Proparoite	709-98-8 2312-35-8	3.2E+02 1.7E+01	n	4.1E+03 7.0E+01	n			8.2E+01 n 9.2E-01 c		4.5E-02 6.8E-02	n
0.02-02 0		2.0E-02	Ĩ	V ·	1	1.1E+05	Propargyl Alcohol	107-19-7	1.6E+02	n	2.3E+03	n			4.0E+01 n		8.1E-03	n
		2.0E-02	1		0.1		Propazine	139-40-2	1.3E+03	n	1.6E+04	n			3.4E+02 n		3.0E-01	n
		1.0E-02	0		0.1		Propiconazole	60207-90-1	6.3E+03	n	8.2E+04	n	_		1.6E+03 n		5.3E+00	n
		1.05.5	8.0E-03 I	V ·		3.3E+04	Propionaldehyde	123-38-6	7.5E+01	n	3.1E+02	n 8.3E+00	n	3.5E+01	n 1.7E+01 n		3.4E-03	n
		1.0E-01	X 1.0E+00 X 3.0E+00 C	V		2.6E+02 3.5E+02	Propyl benzene Propylene	103-65-1	3.8E+03 2.2E+03	ns	2.4E+04 9.3E+03	ns 1.0E+03	n	4.4E+03 1.3E+04	n 6.3E+02 n		1.2E+00 6.0E+00	n
		2.0E+01	P	· ·	I 0.1	0.02.02	Propylene Glycol	57-55-6	1.3E+06	nm	1.6E+07	nm		1.02.01	4.0E+05 n		8.1E+01	n
		3 05 04	2.7E-04 A		1 0.1	4.45.00	Propylene Glycol Dinitrate	6423-43-4	3.9E+05	nm	1.6E+06	nm 2.8E-01	n	1.2E+00	n		0.55.04	
2.4E-01 I	3.7E-06 I	7.0E-01	3.0E-02 I	v .		7.8E+04	Propylene Orycol Monomethyl Ether Propylene Oxide	75-56-9	4.1E+04 2.1E+00	n C	9.7E+05	c 7.6E-01	n c*	3.3E+03	n 3.2⊑+03 n c* 2.7E-01 c		5.6E-01	C
		7.5E-02	1		I 0.1		Propyzamide	23950-58-5	4.7E+03	n	6.2E+04	n			1.2E+03 n		1.2E+00	n
		1.0E-03 5.0E-04		v .	01	5.3E+05	Pyriaine Quinalphos	110-86-1 13593-03-8	7.8E+01 3.2E+01	n	1.2E+03 4.1E+02	n			2.0E+01 n 5.1E+00 n		6.8E-03 4.3E-02	n n
3.0E+00 I					1 0.1		Quinoline	91-22-5	1.8E-01	с	7.7E-01	с			2.4E-02 c		7.8E-05	С
		9.0E-03	3 05 02 4		0.1		Quizalofop-ethyl Refractory Coramic Eiberg	76578-14-8	5.7E+02	n	7.4E+03	n 3.15+04	-	1 35,02	1.2E+02 n		1.9E+00	n
		3.0E-02	3.0E-02 A		0.1		Resmethrin	10453-86-8	1.9E+03	n	2.5E+04	n 3.1E+01		1.3E+02	6.7E+01 n		4.2E+01	n
		5.0E-02	н	V ·			Ronnel	299-84-3	3.9E+03	n	5.8E+04	n			4.1E+02 n		3.7E+00	n
2.2E-01 C	C 6.3E-05 C	4.0E-03		м	I 0.1		Kotenone Safrole	83-79-4 94-59-7	2.5E+02 5.5E-01	n c	3.3E+03 1.0E+01	n c 1.6E-02	с	1.9E-01	6.1E+01 n c 9.6E-02 c		3.2E+01 5.9E-05	n c
		5.0E-03	1		1		Selenious Acid	7783-00-8	3.9E+02	n	5.8E+03	n			1.0E+02 n			n
		5.0E-03	1 2.0E-02 C				Selenium Selenium Sulfide	7782-49-2	3.9E+02	n	5.8E+03	n 2.1E+01	n	8.8E+01	n 1.0E+02 n	5.0E+01	5.2E-01	n 2.6E-01
		0.02-00	- L.UL-UL U					0-+0.04-0	0.00102		0.02100	2.12101		0.02/01	I.ULIUZ II			

Key: I = IR	IS; P = PPRTV;	D = DWSHA;	; O = OPP; A	= ATSDR; (cer: n = no	C = Cal	EPA; X	(= APPEN here: n Sl	NDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user gu < 100X c.Sl.:** = where n.Sl. < 10X c.Sl.:SSl. values are based on DAF=1: m = 1	ide Section 2.3	3.5; L = see us	ser gui eilina lir	de on lead; M nit (See User	= mutag Guide):	gen; S = see s = Concen	user guide Se	ction 5; V = volatile; eed Csat (See User	R = RBA appl Guide)	ied (See User	Guide	for Arsenic
	Tox	icity and Chen	nical-specific I	nformation		.,	1010.1102	Contaminant		nay oxoood o	onnig ni	1112 (000 000)	ouldo),	Screening	Levels		ouido,	Protection of	Ground	Water SSLs
SFO	к IUR е	RfD _o	к к e RfC _i e	v o muta-			C _{sat}			Resident Soi		Industrial Soil	R	esident Air	Industrial A	ir Tapwater	MCL	RISK-Dased SSL		MCL-based SSL
(mg/kg-day)-1	y (ug/m ³) ⁻¹ y	(mg/kg-day)	y (mg/m ³) y	I gen G	SIABS	ABS	(mg/kg)	Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m ³)	ey (ug/m ³)	key (ug/L) key	(ug/L)	(mg/kg)	key	(mg/kg)
		1.4E-01	0		1	0.1		Sethoxydim Silico (ar stalling, coopirable)	74051-80-2	8.8E+03	n	1.1E+05	nm	2 15:00	n 1 2E+01	1.6E+03 n		1.4E+01	n	
		5.0E-03	3.0E-03 C		0.04			Silver	7440-22-4	4.3E+00 3.9E+02	n	5.8E+03	n	5.1E+00	11 1.35+01	9.4E+01 n		8.0E-01	n	
1.2E-01	Н	5.0E-03	1		1	0.1		Simazine	122-34-9	4.5E+00	C*	1.9E+01	С			6.1E-01 c	4.0E+00	3.0E-04	С	2.0E-03
		1.3E-02	1		1	0.1		Sodium Acifluorfen	62476-59-9	8.2E+02	n	1.1E+04	n			2.6E+02 n		2.1E+00	n	
5.0E-01	C 1.5E-01 C	2.0E-02	C 2.0E-04 C	м	0.025			Sodium Dichromate	10588-01-9	3.0E-01	c	6.2E+00	c	6.8E-06	c 8.2E-05	c 4.1E-02 c			С	
2.7E-01	Н	3.0E-02	1		1	0.1		Sodium Diethyldithiocarbamate	148-18-5	2.0E+00	с	8.5E+00	с			2.9E-01 c		1.8E-04	С	
		5.0E-02	A 1.3E-02 C		1	0.1		Sodium Fluoracetate	7681-49-4	3.9E+03	n	5.8E+04	n	1.4E+01	n 5.7E+01	n 1.0E+03 n		9 1E 05	n	
		1.0E-03	н Н		1	0.1		Sodium Metavanadate	13718-26-8	7.8E+01	n	1.2E+03	n			2.0E+01 n		0.12-03	n	
		8.0E-04	P		1			Sodium Tungstate	13472-45-2	6.3E+01	n	9.3E+02	n			1.6E+01 n			n	
2.4E-02	н	8.0E-04 3.0E-02	P		1	0.1		Sodium Tungstate Dihydrate Stirofos (Tetrachlorovinnhos)	10213-10-2 961-11-5	6.3E+01 2 3E+01	n c*	9.3E+02 9.6E+01	n			1.6E+01 n 2.8E+00 c		8 2E-03	n	
5.0E-01	C 1.5E-01 C	2.0E-02	C 2.0E-04 C	м	0.025	0.1		Strontium Chromate	7789-06-2	3.0E-01	c	6.2E+00	c	6.8E-06	c 8.2E-05	c 4.1E-02 c		0.22-00	c	
		6.0E-01	-		1			Strontium, Stable	7440-24-6	4.7E+04	n	7.0E+05	nm			1.2E+04 n		4.2E+02	n	
		3.0E-04 2.0E-01	1 1.0E+00 1	V	1	0.1	8.7E+02	Strychnine Styrene	57-24-9 100-42-5	1.9E+01 6.0E+03	n	2.5E+02 3.5E+04	n	1.0E+03	n 4.4E+03	5.9E+00 n n 1.2E+03 n	1.0E+02	6.5E-02 1.3E+00	n n	1.1E-01
		3.0E-03	P		1	0.1		Styrene-Acrylonitrile (SAN) Trimer		1.9E+02	n	2.5E+03	n			4.8E+01 n			n	
		1.0E-03	P 2.0E-03 X		1	0.1		Sulform(bic/4_chlorohenzene) 1_1'	126-33-0	6.3E+01	n	8.2E+02	n	2.1E+00	n 8.8E+00	n 2.0E+01 n		4.4E-03	n	
		0.UE-U4	1.0E-03_C	V	1	0.1		Sulfur Trioxide	7446-11-9	1.4E+01	nm	6.0E+02	nm	1.0E+00	n 4.4E+00	n 2.1F+00 n		0.56-02	n	
			1.0E-03 C		1			Sulfuric Acid	7664-93-9	1.4E+06	nm	6.0E+06	nm	1.0E+00	n 4.4E+00	n				
2.5E-02	I 7.1E-06 I	5.0E-02	Н		1	0.1	_	Sulfurous acid, 2-chloroethyl 2-[4-(1,1-dimethylethyl)phenoxy]-1-methylethyl ester	21564 17 0	2.2E+01	C	9.2E+01	C	4.0E-01	c 1.7E+00	c 1.3E+00 c		1.5E-02 3.3E±00	C	
		7.0E-02	1		1	0.1		Tebuthiuron	34014-18-1	4.4E+03	n	5.7E+04	n			1.4E+03 n		3.9E-01	n	
		2.0E-02	н		1	0.1		Temephos	3383-96-8	1.3E+03	n	1.6E+04	n			4.0E+02 n		7.6E+01	n	
		1.3E-02 2.5E-05	I H	V	1	0.1	3 1E+01	Terbacil Terbufos	5902-51-2 13071-70-0	8.2E+02 2.0E+00	n	1.1E+04 2.9E+01	n			2.5E+02 n 2.4E-01 n		7.5E-02 5.2E-04	n	
		1.0E-03	ï	•	1	0.1	0.12.01	Terbutryn	886-50-0	6.3E+01	n	8.2E+02	n			1.3E+01 n		1.9E-02	n	
		1.0E-04	1		1	0.1		Tetrabromodiphenyl ether, 2,2',4,4'- (BDE-47)	5436-43-1	6.3E+00	n	8.2E+01	n			2.0E+00 n		5.3E-02	n	
2.6E-02	7.4E-06	3.0E-04 3.0E-02	1	v	1		6.8E+02	Tetrachlorobenzene, 1,2,4,5- Tetrachloroethane, 1,1,1,2-	95-94-3 630-20-6	2.3E+01 2.0E+00	n c	3.5E+02 8.8E+00	n c	3.8E-01	c 1.7E+00	c 5.7E-01 c		7.9E-03 2.2E-04	n c	
2.0E-01	I 5.8E-05 C	2.0E-02	I	V	1		1.9E+03	Tetrachloroethane, 1, 1, 2,2-)	79-34-5	6.0E-01	С	2.7E+00	С	4.8E-02	c 2.1E-01	c 7.6E-02 c		3.0E-05	С	
2.1E-03	I 2.6E-07 I	6.0E-03	I 4.0E-02 I	V	1	0.1	1.7E+02	Tetrachloroethylene	127-18-4	2.4E+01	C**	1.0E+02	C**	1.1E+01 (e** 4.7E+01	c** 1.1E+01 c**	5.0E+00	5.1E-03	C**	2.3E-03
2.0E+01	Н	3.0E-02	<u> </u>	V	1	0.1		Tetrachlorotoluene, p-alpha-alpha, alpha	5216-25-1	3.5E-02	C	1.6E-01	C			1.3E-03 c		4.5E-01	C	
		5.0E-04	1		1	0.1	0 45 . 00	Tetraethyl Dithiopyrophosphate	3689-24-5	3.2E+01	n	4.1E+02	n		0.55.05	7.1E+00 n		5.2E-03	n	
		2.0E-03	8.0E+01 I	V	1	0 0007	2.1E+03	Tetrafluoroetnane, 1,1,1,2- Tetrul (Trinitsaahcavlmothylaitraminc)	479-45-8	1.0E+05 1.6E+02	nms	4.3E+05 2.3E+03	nms	8.3E+04	n 3.5E+05	3.9E+01 n		9.3E+01 3.7E-01	n	
		2.0E-05	s		1	0.0001		Thallic Oxde	1314-32-5	1.6E+00	n	2.3E+01	n			4.0E-01 n		0.72 01	n	
		1.0E-05	X		1			Thallium (I) Nitrate	10102-45-1	7.8E-01	n	1.2E+01	n			2.0E-01 n	2.05100	1 45 02	n	1 45 01
		1.0E-05 1.0E-05	x	v	1			Thallium Acetate:	563-68-8	7.8E-01	n	1.2E+01 1.2E+01	n			2.0E-01 n	2.02+00	4.1E-02	n	1.4E-01
		2.0E-05	Х	V	1			Thallium Carbonate	6533-73-9	1.6E+00	n	2.3E+01	n			4.0E-01 n		8.3E-05	n	
		1.0E-05	X S		1			Thallium Chloride Thallium Selenite	7791-12-0	7.8E-01 7.8E-01	n	1.2E+01	n			2.0E-01 n			n	
		2.0E-05	x		1			Thallium Sulfate	7446-18-6	1.6E+00	n	2.3E+01	n			4.0E-01 n			n	
		4.3E-02	0		1	0.1		Thifensulfuron-methyl	79277-27-3	2.7E+03	n	3.5E+04	n			8.6E+02 n		2.6E-01	n	
		7.0E-02 7.0E-02	x		1	0.1		Thiodiglycol	28249-77-6 111-48-8	5.4E+02	n	8.2E+03 7.9E+04	n			1.6E+02 n 1.4E+03 n		5.5E-01 2.8E-01	n	
		3.0E-04	н		1	0.1		Thiofanox	39196-18-4	1.9E+01	n	2.5E+02	n			5.3E+00 n		1.8E-03	n	
1.2E-02	0	2.7E-02 1.5E-02	0		1	0.1		Thiophanate, Methyl Thiram	23564-05-8 137-26-8	4.7E+01 9.5E+02	C*	2.0E+02 1.2E+04	C			6.7E+00 c*		5.7E-03 4.2E-01	с*	
		6.0E-02	H		1	0.1		Tin	7440-31-5	4.7E+04	n	7.0E+05	nm			1.2E+04 n		3.0E+03	n	
		0.05.00	1.0E-04 A	V	1		0.05.05	Titanium Tetrachloride	7550-45-0	1.4E+05	nm	6.0E+05	nm	1.0E-01	n 4.4E-01	n 2.1E-01 n	1.05.00	7.05.04	n	0.05.01
	1.1E-05_C	8.0E-02	8.0E-06 C	V	1		0.2E+02	Toluene-2.4-diisocvanate	584-84-9	4.9E+03 6.4E+00	n	4.7E+04 2.7E+01	ns	8.3E-03	n 3.5E-02	n 1.1E+03 n	1.0E+03	2.5F-04	n	0.9E-01
1.8E-01	х	2.0E-04	х		1	0.1		Toluene-2,5-diamine	95-70-5	3.0E+00	C**	1.3E+01	C*		2.02 02	4.3E-01 c**		1.3E-04	C**	
1.65.00	1.1E-05 C		8.0E-06 C	V	1	0.1	1.7E+03	Toluene-2,6-diisocyanate	91-08-7	5.3E+00	n	2.2E+01	n	8.3E-03	n 3.5E-02	n 1.7E-02 n		2.6E-04	n	
3.0E-02	P 5.1E-05 C	4.0E-03	х		1	0.1		Toluidine, p-	90-53-4 106-49-0	3.4E+01 1.8E+01	с с*	7.7E+02	c c*	5.5E-02	C 2.4E-01	2.5E+00 c*		2.0E-03 1.1E-03	с с*	
		3.0E+00	Р	V	1		3.4E-01	Total Petroleum Hydrocarbons (Aliphatic High)	E1790670	2.3E+05	nms	3.5E+06	nms			6.0E+04 n		2.4E+03	n	
		1.0E-02	6.0E-01 P X 1.0E-01 P	V	1		1.4E+02 6.9E+00	Total Petroleum Hydrocarbons (Aliphatic Low) Total Petroleum Hydrocarbons (Aliphatic Medium)	E1790666 E1790668	5.2E+02 9.6E+01	ns	2.2E+03 4 4E+02	ns	6.3E+02 1.0E+02	n 2.6E+03 n 4.4E+02	n 1.3E+03 n		8.8E+00 1.5E+00	n	
		4.0E-02	P		1	0.1	0.02.00	Total Petroleum Hydrocarbons (Aromatic High)	E1790676	2.5E+03	n	3.3E+04	n			8.0E+02 n		8.9E+01	n	
		4.0E-03	P 3.0E-02 P	V	1		1.8E+03	Total Petroleum Hydrocarbons (Aromatic Low)	E1790672	8.2E+01	n	4.2E+02	n	3.1E+01	n 1.3E+02	n 3.3E+01 n		1.7E-02	n	
1.1E+00	I 3.2E-04 I	4.0E-03	F 3.0E-03 P	v	1	0.1		Toxaphene (Aromatic Medium)	8001-35-2	4.9E-01	n c	0.0E+02 2.1E+00	c	8.8E-03	c 3.8E-02	c 7.1E-02 c	3.0E+00	2.3E-02 1.1E-02	C	4.6E-01
		7.5E-03	1		1	0.1		Tralomethrin	66841-25-6	4.7E+02	n	6.2E+03	n			1.5E+02 n		5.8E+01	n	
		3.0E-04 8.0E+01	A	V	1	0.1		Tri-n-butyltin Triacetin	688-73-3 102-76-1	2.3E+01 5.1E+06	n	3.5E+02	n			3.7E+00 n		8.2E-02 4.5E+02	n	
		3.4E-02	0		1	0.1		Triadimefon	43121-43-3	2.1E+03	n	2.8E+04	n			6.3E+02 n		5.0E-01	n	
7.2E-02	0	2.5E-02	0	V	1	0.4		Triallate	2303-17-5	9.7E+00	с	4.6E+01	с			4.7E-01 c		1.0E-03	с	
		8.0E-02			1	0.1		Tribenuron-methyl	82097-50-5	6.3E+02 5.1E+02	n	6.6E+03	n	_		2.0E+02 n 1.6F+02 n		2.1E-01 6.1E-02	n	

Key: I = IRI	S; P = PPRTV;	D = DWSHA	; O = OPP; A =	= ATSDR; C =	Cal EPA;)	X = APPEN	IDIX PPRTV SCREEN (See FAQ #29); H = HEAST; F = See FAQ; E = see user g	uide Section 2.3	3.5; L = see u	iser guid	ie on lead; M	= mutag	gen; S = see	user guide Sec	tion 5; V = volatile	; R = RBA app	olied (See User	Guide f	or Arsenic
<u> </u>	Tovi	nity and Chor	puce); c = can	cer; n = nonca	incer; ^ = w	mere: n SL	S TUUX C SL; " = Where n SL < TUX C SL; SSL Values are based on DAF=1; m = Contaminant	Concentration r	may exceed c	eiling lir	nit (See User	Guide);	s = Concen	evels	eeu Usat (See Us	er Guide)	Protection of	Ground	Water SSI c
	k k	and one	k k	V			Contaminant	_					Sucering				Risk-based	Si Jund	MCL-based
SFO	e IUR e	RfD _o	e RfC _i e	o muta-		C _{sat}			Resident So	il	Industrial Soil	Re	esident Air	Industrial Ai	r Tapwater	MCL	SSL		SSL
(mg/kg-day)-1	y (ug/m ³) ⁻¹ y	mg/kg-day)	y (mg/m ³) y	I gen GIA	BS ABS	(mg/kg)	Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m ³) k	ey (ug/m ³)	key (ug/L) k	ey (ug/L)	(mg/kg)	key	(mg/kg)
		5.0E-03	1	V 1			Tribromobenzene, 1,2,4-	615-54-3	3.9E+02	n	5.8E+03	n			4.5E+01	n	6.4E-02	n	
		9.0E-03	Х	1	0.1		Tribromophenol, 2,4,6-	118-79-6	5.7E+02	n	7.4E+03	n			1.2E+02	n	2.2E-01	n	
9.0E-03	Р	1.0E-02	Р	1	0.1		Tributyl Phosphate	126-73-8	6.0E+01	С*	2.6E+02	C*			5.2E+00	o*	2.5E-02	C*	
		3.0E-04	P	1	0.1		Tributyltin Compounds	E1790678	1.9E+01	n	2.5E+02	n			6.0E+00	n		n	
		3.0E-04	<u> </u>	1	0.1		Tributyltin Oxide	56-35-9	1.9E+01	n	2.5E+02	n			5.7E+00	n	2.9E+02	n	
		3.0E+01	I 5.0E+00 P	V 1		9.1E+02	Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1	6.7E+03	ns	2.8E+04	ns	5.2E+03	n 2.2E+04	n 1.0E+04	n	2.6E+01	n	
7.0E-02	1	2.0E-02	1	1	0.1		Trichloroacetic Acid	76-03-9	7.8E+00	с	3.3E+01	с			1.1E+00	c 6.0E+01	2.2E-04	с	1.2E-02
2.9E-02	H	2.05.05	V	1	0.1		Trichloroaniline HCl, 2,4,6-	33003-50-2	1.9E+01	C	7.9E+01	C			2.7E+00	с -	7.4E-03	C	
7.0E-03	X	3.0E-05	~	V 1	0.1		Trichlerchenzone, 1,2,2	034-93-5	1.9E+00	n	2.5E+01	n			4.0E-01	n	3.0E-03	n	
2 05 02	P	0.0E-04		V 1		4 0E±02	Trichlorobenzene, 1,2,3-	120 92 1	0.3E+01	0**	9.3E+02	0** 1	2 1 =+00	n 9.9E±00	7.0E+00	** 7.05+01	2.1E-02	0**	2.05.01
2.52-02	F	2.0E+00	1 5.0E+00 L	V 1		6.4E+02	Trichloroethane 111-	71-55-6	8.1E+03	ne	3.6E+04	ne	5.2E+03	n 2.2E+04	n 8.0E+03	n 2.0E+02	2.8E+00	n	7.0E-02
5 7E-02	1 1 6E-05 1	4 0E-03	1 2 0E-04 X	V 1		2 2E+03	Trichloroethane 1 1 2-	79-00-5	1 1E+00	C**	5.0E+00	C**	1.8E-01 c	** 7.7E-01	c** 2.8E-01 (** 5.0E+00	8.9E-05	c**	1.6E-02
4.6E-02	1 4.1E-06 I	5.0E-04	1 2.0E-03 1	<u>v</u> м 1		6.9E+02	Trichloroethylene	79-01-6	9.4E-01	c**	6.0E+00	c** .	4.8E-01 0	** 3.0E+00	c** 4.9E-01 (** 5.0E+00	1.8E-04	c**	1.8E-03
		3.0E-01	I	V 1		1.2E+03	Trichlorofluoromethane	75-69-4	2.3E+04	ns	3.5E+05	nms			5.2E+03	n	3.3E+00	n	
		1.0E-01	1	1	0.1		Trichlorophenol, 2,4,5-	95-95-4	6.3E+03	n	8.2E+04	n			1.2E+03	n	4.0E+00	n	
1.1E-02	I 3.1E-06 I	1.0E-03	Р	1	0.1		Trichlorophenol, 2,4,6-	88-06-2	4.9E+01	C**	2.1E+02	C**	9.1E-01	c 4.0E+00	c 4.1E+00 d	**	4.0E-03	C**	
		1.0E-02	1	1	0.1		Trichlorophenoxyacetic Acid, 2,4,5-	93-76-5	6.3E+02	n	8.2E+03	n			1.6E+02	n	6.8E-02	n	
		8.0E-03	L	1	0.1		Trichlorophenoxypropionic acid, -2,4,5	93-72-1	5.1E+02	n	6.6E+03	n			1.1E+02	n 5.0E+01	6.1E-02	n	2.8E-02
		5.0E-03	1	V 1		1.3E+03	Trichloropropane, 1,1,2-	598-77-6	3.9E+02	n	5.8E+03	ns			8.8E+01	n	3.5E-02	n	
3.0E+01	1	4.0E-03	I 3.0E-04 I	V M 1		1.4E+03	Trichloropropane, 1,2,3-	96-18-4	5.1E-03	С	1.1E-01	С	3.1E-01	n 1.3E+00	n 7.5E-04	С	3.2E-07	С	
		3.0E-03	X 3.0E-04 P	V 1		3.1E+02	Trichloropropene, 1,2,3-	96-19-5	7.3E-01	n	3.1E+00	n	3.1E-01	n 1.3E+00	n 6.2E-01	n	3.1E-04	n	
		2.0E-02	A	1	0.1		Tricresyl Phosphate (TCP)	1330-78-5	1.3E+03	n	1.6E+04	n			1.6E+02	n	1.5E+01	n	
		3.0E-03	1	1	0.1		Tridiphane	58138-08-2	1.9E+02	n	2.5E+03	n			1.8E+01	n	1.3E-01	n	
		0.05.00	7.0E-03 I	V 1		2.8E+04	I riethylamine	121-44-8	1.2E+02	n	4.8E+02	n	7.3E+00	n 3.1E+01	n 1.5E+01	n	4.4E-03	n	
		2.0E+00	P	1	0.1	4.05.00	Triethylane.Giycol	112-27-6	1.3E+05	nm	1.6E+06	nm	0.45.04	0.05.04	4.0E+04	n	8.8E+00	n	
7 75 00		7.55.00	2.0E+01 P	V 1		4.8E+03		420-46-2	1.5E+04	ns	6.2E+04	ns :	2.1E+04	n 8.8E+04	n 4.2E+04	n -+	1.3E+02	n -*	
7.7E-03	P	1.5E-03	P	V I	0.1			1082-09-8	9.0E+01	C	4.2E+02	C			2.0E+00 3.0E+00	o*	8.4E-02 8.6E-04	C"	
2.02-02	•	1.0E-02	1 6 0E 02 1	V 1	0.1	2 0E±02	Trimethylhormona 1.2.2	526 73 8	3.4E±02	ne	2.05±03	ne i	6 35+01	p 2.6E±02	p 5 5E±01	, n	9.1E.02	<u> </u>	
		1.0E-02	1 6.0E-02 1	V 1		2.5E+02	Trimethylbenzene, 1,2,3-	95-63-6	3.0E+02	ne	1.8E+03	ne i	6.3E+01	n 2.6E+02	n 5.6E+01	n	8 1E-02	n	
		1.0E-02	1 6.0E-02 1	v 1		1.8E+02	Trimethylbenzene, 1,2,4	108-67-8	2.7E+02	ns	1.5E+03	ns i	6.3E+01	n 2.6F+02	n 6.0E+01	n	8.7E-02	'n	
		1.0E-02	X	V 1		3.0E+01	Trimethylpentene, 2,4,4-	25167-70-8	7.8E+02	ns	1.2E+04	ns			6.5E+01	n	2.2E-01	n	
		3.0E-02	1	1	0.019		Trinitrobenzene: 1,3,5- 0 C	99-35-4	2.2E+03	n	3.2E+04	n			5.9E+02	n	2.1E+00	n	
3.0E-02	1	5.0E-04	1	1	0.032		Trinitrotoluene 2,4,6 // // // // // // // //////////////	118-96-7	2.1E+01	C**	9.6E+01	C**			2.5E+00 (**	1.5E-02	C**	
		2.0E-02	Р	1	0.1		Triphenylphosphine Oxide	791-28-6	1.3E+03	n	1.6E+04	n			3.6E+02	n	1.5E+00	n	
		2.0E-02	A	1	0.1		Tris(1,3-Dichloro-2-propyl) Phosphate	13674-87-8	1.3E+03	n	1.6E+04	n			3.6E+02	n	8.0E+00	n	
		1.0E-02	Х	1	0.1		Tris(1-chloro-2-propÿl)phosphate	13674-84-5	6.3E+02	n	8.2E+03	n			1.9E+02	n	6.5E-01	n	
2.3E+00	C 6.6E-04 C			V 1		4.7E+02	Tris(2,3-dibromopropyl)phosphate	126-72-7	2.8E-01	с	1.3E+00	C ·	4.3E-03	c 1.9E-02	c 6.8E-03	с	1.3E-04	с	
2.0E-02	P	7.0E-03	P	1	0.1		Tris(2-chloroethyl)phosphate	115-96-8	2.7E+01	C*	1.1E+02	C*			3.8E+00	c*	3.8E-03	C*	
3.2E-03	Р	1.0E-01	P	1	0.1		Iris(2-etnyinexyi)phosphate	78-42-2	1.7E+02	C*	7.2E+02	С			2.4E+01	or i	1.2E+02	C*	
		8.0E-04	P	1			Lingsten	7440-33-7	6.3E+01	n	9.3E+02	n	4 05 00	- 4.05.04	1.6E+01		2.4E+00	n	4 45.04
1.05.00	0.205.04.0	2.0E-04	A 4.0E-05 A	1	0.4		Uranium (Soluble Salts)	E/15565	1.6E+01	n	2.3E+02	n ·	4.2E-02	1.8E-01	n 4.0E+00	n 3.0E+01	1.8E+00	n	1.4E+01
1.02+00	9 3E 03 D	0.0E.03	1 7 0E 06 D	IVI I	0.1		Vanadium Pentovide	1314 62 4	1.2E-01	C **	2.00	C .	3 45 04	4.2E-02	0* 1.5E±02	n .	5.0E-00	0	
	0.3E-03 P	5.0E-03	S 1 0E-04 A	0.0	26		Vanadium and Compounds	7440-62-2	4.0E+02	n	5.8E+03	с . п	1 0E-01	n 44E-01	n 8.6E+02	n	8.6E+01	n	
		1.0E-03	1 I.02-04 A	V 1	20		Vernolate	1929-77-7	7.8F+01	n	1.2E+03	n	1.02-01	4.42-01	1.1E+01	n	8.9E-03	n	
		1.2E-03	0	1	0.1		Vinclozolin	50471-44-8	7.6E+01	n	9.8E+02	n			2.1E+01	n	1.6E-02	n	
		1.0E+00	H 2.0E-01 I	V 1	0.1	2.8E+03	Vinyl Acetate	108-05-4	9.1E+02	n	3.8E+03	ns	2.1E+02	n 8.8E+02	n 4.1E+02	n	8.7E-02	n	
	3.2E-05 H		3.0E-03 I	V 1		2.5E+03	Vinyl Bromide	593-60-2	1.2E-01	C*	5.2E-01	C*	8.8E-02	c* 3.8E-01	c* 1.8E-01	o*	5.1E-05	с*	
7.2E-01	I 4.4E-06 I	3.0E-03	I 1.0E-01 I	V M 1		3.9E+03	Vinyl Chloride	75-01-4	5.9E-02	С	1.7E+00	С	1.7E-01	c 2.8E+00	c 1.9E-02	c 2.0E+00	6.5E-06	С	6.9E-04
		3.0E-04	1	1	0.1		Warfarin	81-81-2	1.9E+01	n	2.5E+02	n			5.6E+00	n	5.9E-03	n	
		2.0E-01	S 1.0E-01 S	V 1		3.9E+02	Xylene, P-	106-42-3	5.6E+02	ns	2.4E+03	ns	1.0E+02	n 4.4E+02	n 1.9E+02	n	1.9E-01	n	
		2.0E-01	S 1.0E-01 S	V 1		3.9E+02	Xylene, m-	108-38-3	5.5E+02	ns	2.4E+03	ns	1.0E+02	n 4.4E+02	n 1.9E+02	n	1.9E-01	n	
		2.0E-01	S 1.0E-01 S	V 1		4.3E+02	Xylene, o-	95-47-6	6.5E+02	ns	2.8E+03	ns	1.0E+02	n 4.4E+02	n 1.9E+02	n	1.9E-01	n	
		2.0E-01	I 1.0E-01 I	V 1		2.6E+02	Xylenes	1330-20-7	5.8E+02	ns	2.5E+03	ns	1.0E+02	n 4.4E+02	n 1.9E+02	n 1.0E+04	1.9E-01	n	9.9E+00
		3.0E-04		1			Zinc Phosphide	1314-84-7	2.3E+01	n	3.5E+02	n			6.0E+00	n	0.75.05	n	
		3.0E-01		1	0.4		Zinc and Compounds	/440-66-6	2.3E+04	n	3.5E+05	nm			6.0E+03	n	3.7E+02	n	
		5.0E-02	1	1	0.1		Zineb Zineszine	12122-67-7	3.2E+03	n	4.1E+04	n			9.9E+02	n	2.9E+00	n	
		8.0E-05	~	1			zirconium	7440-67-7	6.3E+00	n	9.3E+01	n			1.6E+00	n	4.8E+00	n	

NSW EPA

Waste Classification Guidelines Part 1: Classifying waste

November 2014

Table 1: CT1 & CT2 values for classifying waste by chemical assessment without the TCLP test

For disposal requirements for organic and inorganic chemical contaminants not listed below, contact the EPA. Aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have not been listed with values in this table and need not be tested for.

	Maximum valu contaminant con for classificatio	ues of <i>specific</i> c <i>entration</i> (SCC) n without TCLP	
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Arsenic	100	400	
Benzene	10	40	71-43-2
Benzo(a)pyrene ²	0.8	3.2	50-32-8
Beryllium	20	80	
Cadmium	20	80	
Carbon tetrachloride	10	40	56-23-5
Chlorobenzene	2,000	8,000	108-90-7
Chloroform	120	480	67-66-3
Chlorpyrifos	4	16	2921-88-2
Chromium (VI) ³	100	400	
m-Cresol	4,000	16,000	108-39-4
o-Cresol	4,000	16,000	95-48-7
p-Cresol	4,000	16,000	106-44-5
Cresol (total)	4,000	16,000	1319-77-3
Cyanide (amenable) ⁴	70	280	
Cyanide (total)	320	1,280	
2,4-D	200	800	94-75-7
1,2-Dichlorobenzene	86	344	95-50-1
1,4-Dichlorobenzene	150	600	106-46-7
1,2-Dichloroethane	10	40	107-06-2
1,1-Dichloroethylene	14	56	75-35-4
Dichloromethane	172	688	75-09-2
2,4-Dinitrotoluene	2.6	10.4	121-14-2
Endosulfan⁵	60	240	See below ⁵
Ethylbenzene	600	2,400	100-41-4
Fluoride	3,000	12,000	
Fluroxypyr	40	160	69377-81-7
Lead	100	400	

	Maximum valu contaminant con for classificatio	ues of <i>specific</i> <i>centration</i> (SCC) n without TCLP	
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg)	CT2 (mg/kg)	CAS Registry Number
Mercury	4	16	
Methyl ethyl ketone	4,000	16,000	78-93-3
Moderately harmful pesticides ⁶ (total)	250	1,000	See below ⁶
Molybdenum	100	400	
Nickel	40	160	
Nitrobenzene	40	160	98-95-3
C6–C9 petroleum hydrocarbons ⁷	650	2,600	
C10–C36 petroleum hydrocarbons ⁷	10,000	40,000	
Phenol (non-halogenated)	288	1,152	108-95-2
Picloram	60	240	1918-02-1
Plasticiser compounds ⁸	20	80	See below ⁸
Polychlorinated biphenyls ⁹	<50	<50	1336-36-3
Polycyclic aromatic hydrocarbons (total) ¹⁰	200	800	
Scheduled chemicals ¹¹	<50	<50	
Selenium	20	80	
Silver	100	400	
Styrene (vinyl benzene)	60	240	100-42-5
Tebuconazole	128	512	107534-96-3
1,2,3,4- Tetrachlorobenzene	10	40	634-66-2
1,1,1,2-Tetrachloroethane	200	800	630-20-6
1,1,2,2-Tetrachloroethane	26	104	79-34-5
Tetrachloroethylene	14	56	127-18-4
Toluene	288	1,152	108-88-3
1,1,1-Trichloroethane	600	2,400	71-55-6
1,1,2-Trichloroethane	24	96	79-00-5
Trichloroethylene	10	40	79-01-6
2,4,5-Trichlorophenol	8,000	32,000	95-95-4
2,4,6-Trichlorophenol	40	160	88-06-2
Triclopyr	40	160	55335-06-3
	Maximum valu contaminant con for classificatio	ues of <i>specific</i> c <i>entration</i> (SCC) n without TCLP	
-----------------	--	--	---------------------
	General solid waste ¹	Restricted solid waste	
Contaminant	CT1 (mg/kg) CT2 (mg/kg)		CAS Registry Number
Vinyl chloride	4	16	75-01-4
Xylenes (total)	1,000	4,000	1330-20-7

Notes

- 1. Values are the same for general solid waste (putrescible) and general solid waste (non-putrescible).
- 2. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.
- 3. These limits apply to chromium in the +6 oxidation state only.
- 4. Analysis for cyanide (amenable) is the established method for assessing potentially leachable cyanide. The EPA may consider other methods if it can be demonstrated that these methods yield the same information.
- 5. Endosulfan (CAS Registry Number 115-29-7) means the total of Endosulfan I (CAS Registry Number 959-98-8), Endosulfan II (CAS Registry Number 891-86-1) and Endosulfan sulfate (CAS Registry Number 1031-07-8).
- 6. The following moderately harmful pesticides are to be included in the total values specified:

Moderately harmful pesticides (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Atrazine	1912-24-9	Imidacloprid	138261-41-3		
Azoxystrobin	131860-33-8	Indoxacarb	173584-44-6		
Bifenthrin	82657-04-3	Malathion (Maldison)	121-75-5		
Brodifacoum	56073-10-0	Metalaxyl	57837-19-1		
Carboxin	5234-68-4	Metalaxyl-M	70630-17-0		
Copper naphthenate	1338-02-9	Methidathion	950-37-8		
Cyfluthrin	68359-37-5	3-Methyl-4-chlorophenol	59-50-7		
Cyhalothrin	68085-85-8	Methyl chlorpyrifos	5598-13-0		
Cypermethrin	52315-07-08	N-Methyl pyrrolidone	872-50-4		
Deltamethrin	52918-63-5	2-octylthiazol-3-one	26530-20-1		
Dichlofluanid	1085-98-9	Oxyfluorfen	42874-03-3		
Dichlorvos	62-73-7	Paraquat dichloride	1910-42-5		
Difenoconazole	119446-68-3	Parathion methyl	298-00-0		
Dimethoate	60-51-5	Permethrin	52645-53-1		
Diquat dibromide	85-00-7	Profenofos	41198-08-7		
Emamectin benzoate	137515-75-4 & 155569-91-8	Prometryn	7287-19-6		
Ethion	563-12-2	Propargite	2312-35-8		
Fenthion	55-38-9	Pentachloronitrobenzene (Quintozene)	82-68-8		
Fenitrothion	122-14-5	Simazine	122-34-9		
Fipronil	120068-37-3	Thiabendazole	148-79-8		

Moderately harmful pesticides (total)				
NameCAS Registry NumberCAS Registry Number				
Fluazifop-P-butyl	79241-46-6	Thiamethoxam	153719-23-4	
Fludioxonil	131341-86-1	Thiodicarb	59669-26-0	
Glyphosate	1071-83-6	Thiram	137-26-8	

- 7. Approximate range of petroleum hydrocarbon fractions: petrol C6–C9, kerosene C10–C18, diesel C12–C18, and lubricating oils above C18. Laboratory results are reported as four different fractions: C6–C9, C10–C14, C15–C28 and C29–C36. The results of total petroleum hydrocarbons (TPH) (C10–C36) analyses are reported as a sum of the relevant three fractions. Please note that hydrocarbons are defined as molecules that only contain carbon and hydrogen atoms. Prior to TPH (C10–C36) analysis, clean-up may be necessary to remove non-petroleum hydrocarbon compounds. Where the presence of other materials that will interfere with the analysis may be present, such as oils and fats from food sources, you are advised to treat the extract that has been solvent exchanged to hexane with silica gel as described in USEPA Method 1664A (USEPA 2000).
- 8. Plasticiser compounds means the total of di-2-ethyl hexyl phthalate (CAS Registry Number 117-81-7) and di-2-ethyl hexyl adipate (CAS Registry Number 103-23-1) contained within a waste.
- Polychlorinated biphenyls must be managed in accordance with the EPA's polychlorinated biphenyl (PCB) chemical control order 1997, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/pcbccco1997.pdf.
- 10. The following polycyclic aromatic hydrocarbons (PAHs) are assessed as the total concentration of 16 USEPA Priority Pollutant PAHs, as follows:

Polycyclic aromatic hydrocarbons (total)					
PAH name	CAS Registry Number	PAH name	CAS Registry Number		
Acenaphthene	83-32-9	Chrysene	218-01-9		
Acenaphthylene	208-96-8	Dibenzo(a,h)anthracene	53-70-3		
Anthracene	120-12-7	Fluoranthene	206-44-0		
Benzo(a)anthracene	56-55-3	Fluorene	86-73-7		
Benzo(a)pyrene	50-32-8	Indeno(1,2,3-cd)pyrene	193-39-5		
Benzo(b)fluoranthene	205-99-2	Naphthalene	91-20-3		
Benzo(ghi)perylene	191-24-2	Phenanthrene	85-01-8		
Benzo(k)fluoranthene	207-08-9	Pyrene	129-00-0		

11. Scheduled chemicals must be managed in accordance with the EPA's scheduled chemical wastes chemical control order 2004, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/scwcco2004.pdf.

The following scheduled chemicals are to be included in the total values specified:

Scheduled chemicals (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Aldrin	309-00-2	Heptachlor	76-44-8		
Alpha-BHC	319-84-6	Heptachlor epoxide	1024-57-3		
Beta-BHC	319-85-7	Hexachlorobenzene	118-74-1		
Gamma-BHC (Lindane)	58-89-9	Hexachlorophene	70-30-4		
Delta-BHC	319-86-8	Isodrin	465-73-6		

Waste Classification Guidelines - Part 1: Classification of waste

Scheduled chemicals (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Chlordane	57-74-9	Pentachlorobenzene	608-93-5		
DDD	72-54-8	Pentachloronitrobenzene	82-68-8		
DDE	72-55-9	Pentachlorophenol	87-86-5		
DDT	50-29-3	1,2,4,5-Tetrachlorobenzene	95-94-3		
Dieldrin	60-57-1	2,3,4,6-Tetrachlorophenol	58-90-2		
Endrin	72-20-8	1,2,4-Trichlorobenzene	120-82-1		
Endrin aldehyde	7421-93-4	2,4,5-Trichlorophenoxyacetic acid, salts and esters	93-76-5		

Table 2: TCLP and SCC values for classifying waste by chemical assessment

For disposal requirements for organic and inorganic chemical contaminants not listed below, contact the EPA. Aluminium, barium, boron, chromium (0 and III oxidation states), cobalt, copper, iron, manganese, vanadium and zinc have not been listed with values in this table and need not be tested for.

	Maximum va contam				
	General so	olid waste ¹	Restricted		
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
Arsenic	5.0 ²	500	20	2,000	
Benzene	0.5 ²	18	2	72	71-43-2
Benzo(a)pyrene ³	0.044	10	0.16	23	50-32-8
Beryllium	1.0 ⁵	100	4	400	
Cadmium	1.0 ²	100	4	400	
Carbon tetrachloride	0.5 ²	18	2	72	56-23-5
Chlorobenzene	100 ²	3,600	400	14,400	108-90-7
Chloroform	6 ²	216	24	864	67-66-3
Chlorpyrifos	0.2	7.5	0.8	30	2921-88-2
Chromium (VI) ⁶	5 ²	1,900	20	7,600	
m-Cresol	200 ²	7,200	800	28,800	108-39-4
o-Cresol	200 ²	7,200	800	28,800	95-48-7
p-Cresol	200 ²	7,200	800	28,800	106-44-5
Cresol (total)	200 ²	7,200	800	28,800	1319-77-3
Cyanide (amenable) ^{7, 8}	3.5 ⁷	300	14	1,200	
Cyanide (total) ⁷	16 ⁷	5,900	64	23,600	
2,4-D	10 ²	360	40	1,440	94-75-7
1,2- Dichlorobenzene	4.3 ²	155	17.2	620	95-50-1
1,4- Dichlorobenzene	7.5 ²	270	30	1,080	106-46-7
1,2- Dichloroethane	0.5 ²	18	2	72	107-06-2
1,1- Dichloroethylene	0.7 ²	25	2.8	100	75-35-4
Dichloromethane	8.6 ²	310	34.4	1,240	75-09-2
2,4-Dinitrotoluene	0.13 ²	4.68	0.52	18.7	121-14-2
Endosulfan ⁹	3	108	12	432	See below ⁹

	Maximum va contam				
	General so	olid waste ¹	Restricted	solid waste	
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
Ethylbenzene	30 ¹⁰	1,080	120	4,320	100-41-4
Fluoride	150 ¹⁰	10,000	600	40,000	
Fluroxypyr	2	75	8	300	69377-81- 7
Lead	5 ²	1,500	20	6,000	
Mercury	0.2 ²	50	0.8	200	
Methyl ethyl ketone	200 ²	7,200	800	28,800	78-93-3
Moderately harmful pesticides ¹¹ (total)	N/A ¹²	250	N/A ¹²	1,000	See below ¹¹
Molybdenum	5 ¹⁰	1,000	20	4,000	
Nickel	2 ¹⁰	1,050	8	4,200	
Nitrobenzene	2 ²	72	8	288	98-95-3
C6–C9 petroleum hydrocarbons ¹³	N/A ¹²	650	N/A ¹²	2,600	
C10–C36 petroleum hydrocarbons ¹³	N/A ¹²	10,000	N/A ¹²	40,000	
Phenol (non- halogenated)	14.4 ¹⁴	518	57.6	2,073	108-95-2
Picloram	3	110	12	440	1918-02-1
Plasticiser compounds ¹⁵	1	600	4	2,400	See below ¹⁵
Polychlorinated biphenyls ¹²	N/A ¹²	< 50	N/A ¹²	< 50	1336-36-3
Polycyclic aromatic hydrocarbons (total) ¹⁶	N/A ¹²	200	N/A ¹²	800	
Scheduled chemicals ¹⁷	N/A ¹²	< 50	N/A ¹²	< 50	See below ¹⁷
Selenium	1 ²	50	4	200	
Silver	5.0 ²	180	20	720	
Styrene (vinyl benzene)	3 ¹⁰	108	12	432	100-42-5
Tebuconazole	6.4	230	25.6	920	107534- 96-3
1,2,3,4- Tetrachlorobenzene	0.5	18	2	72	634-66-2

	Maximum va contam				
	General so	olid waste ¹	Restricted		
	Leachable concentration	Specific contaminant concentration	Leachable concentration	Specific contaminant concentration	CAS
Contaminant	TCLP1 (mg/L)	SCC1 (mg/kg)	TCLP2 (mg/L)	SCC2 (mg/kg)	Registry Number
1,1,1,2- Tetrachloroethane	10 ²	360	40	1,440	630-20-6
1,1,2,2- Tetrachloroethane	1.3 ²	46.8	5.2	187.2	79-34-5
Tetrachloroethylene	0.7 ²	25.2	2.8	100.8	127-18-4
Toluene	14.4 ¹⁴	518	57.6	2,073	108-88-3
1,1,1- Trichloroethane	30 ²	1,080	120	4,320	71-55-6
1,1,2- Trichloroethane	1.2 ²	43.2	4.8	172.8	79-00-5
Trichloroethylene	0.5 ²	18	2	72	79-01-6
2,4,5- Trichlorophenol	400 ²	14,400	1,600	57,600	95-95-4
2,4,6- Trichlorophenol	2 ²	72	8	288	88-06-2
Triclopyr	2	75	8	300	55335-06- 3
Vinyl chloride	0.2 ²	7.2	0.8	28.8	75-01-4
Xylenes (total)	50 ¹⁸	1,800	200	7,200	1330-20-7

Notes

- 1. Values are the same for general solid waste (putrescible) and general solid waste (non-putrescible).
- 2. See Hazardous Waste Management System: Identification and Listing of Hazardous Waste Toxicity Characteristics Revisions, Final Rule (USEPA 2012b) for TCLP levels.
- 3. There may be a need for the laboratory to concentrate the sample to achieve the TCLP limit value for benzo(a)pyrene with confidence.
- 4. Calculated from Hazardous Waste: Identification and Listing (USEPA 2012a).
- 5. Calculated from 'Beryllium' in *The Health Risk Assessment and Management of Contaminated Sites* (DiMarco & Buckett 1996).
- 6. These limits apply to chromium in the +6 oxidation state only.
- 7. Taken from the Land Disposal Restrictions for Newly Identified and Listed Hazardous Wastes and Hazardous Soil: Proposed Rule (USEPA 1993).
- 8. Analysis for cyanide (amenable) is the established method used to assess the potentially leachable cyanide. The EPA may consider other methods if it can be demonstrated that these methods yield the same information.
- 9. Endosulfan (CAS Registry Number 115-29-7) means the total of endosulfan I (CAS Registry Number 959-98-8), endosulfan II (CAS Registry Number 891-86-1) and endosulfan sulfate (CAS Registry Number 1031-07-8).
- 10. Calculated from Australian Drinking Water Guidelines (NHMRC 2011).
- 11. The following moderately harmful pesticides are to be included in the total values specified:

Moderately harmful pesticides (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Atrazine	1912-24-9	Imidacloprid	138261-41-3		
Azoxystrobin	131860-33-8	Indoxacarb	173584-44-6		
Bifenthrin	82657-04-3	Malathion (Maldison)	121-75-5		
Brodifacoum	56073-10-0	Metalaxyl	57837-19-1		
Carboxin	5234-68-4	Metalaxyl-M	70630-17-0		
Copper naphthenate	1338-02-9	Methidathion	950-37-8		
Cyfluthrin	68359-37-5	3-Methyl-4-chlorophenol	59-50-7		
Cyhalothrin	68085-85-8	Methyl chlorpyrifos	5598-13-0		
Cypermethrin	52315-07-08	N-Methyl pyrrolidone	872-50-4		
Deltamethrin	52918-63-5	2-octylthiazol-3-one	26530-20-1		
Dichlofluanid	1085-98-9	Oxyfluorfen	42874-03-3		
Dichlorvos	62-73-7	Paraquat dichloride	1910-42-5		
Difenoconazole	119446-68-3	Parathion methyl	298-00-0		
Dimethoate	60-51-5	Permethrin	52645-53-1		
Diquat dibromide	85-00-7	Profenofos	41198-08-7		
Emamectin benzoate	137515-75-4 & 155569-91-8	Prometryn	7287-19-6		
Ethion	563-12-2	Propargite	2312-35-8		
Fenthion	55-38-9	Pentachloronitrobenzene (Quintozene)	82-68-8		
Fenitrothion	122-14-5	Simazine	122-34-9		
Fipronil	120068-37-3	Thiabendazole	148-79-8		
Fluazifop-P-butyl	79241-46-6	Thiamethoxam	153719-23-4		
Fludioxonil	131341-86-1	Thiodicarb	59669-26-0		
Glyphosate	1071-83-6	Thiram	137-26-8		

12. No TCLP analysis is required. Moderately harmful pesticides, petroleum hydrocarbons, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and scheduled chemicals are assessed using SCC1 and SCC2.

Polychlorinated biphenyls must be managed in accordance with the EPA's polychlorinated biphenyl (PCB) chemical control order 1997, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/pcbcco1997.pdf.

- 13. Approximate range of petroleum hydrocarbon fractions: petrol C6–C9, kerosene C10–C18, diesel C12–C18, and lubricating oils above C18. Laboratory results are reported as four different fractions: C6–C9, C10–C14, C15–C28 and C29–C36. The results of total petroleum hydrocarbons (C10–C36) analyses are reported as a sum of the relevant three fractions. Please note that hydrocarbons are defined as molecules that only contain carbon and hydrogen atoms. Prior to TPH (C10–C36) analysis, clean-up may be necessary to remove non-petroleum hydrocarbon compounds. Where the presence of other materials that will interfere with the analysis may be present, such as oils and fats from food sources, you are advised to treat the extract that has been solvent exchanged to hexane with silica gel as described in USEPA *Method 1664A* (USEPA 2000).
- 14. Proposed level for phenol and toluene in *Hazardous Waste Management System: Identification* and Listing of Hazardous Waste – Toxicity Characteristics Revisions, Final Rule (USEPA 2012b).

- 15. Plasticiser compounds means the total of di-2-ethyl hexyl phthalate (CAS Registry Number 117-81-7) and di-2-ethyl hexyl adipate (CAS Registry Number 103-23-1) contained within a waste.
- 16. The following polycyclic aromatic hydrocarbons are assessed as the total concentration of 16 USEPA Priority Pollutant PAHs, as follows:

Polycyclic aromatic hydrocarbons (total)					
PAH name	CAS Registry Number	PAH name	CAS Registry Number		
Acenaphthene	83-32-9	Chrysene	218-01-9		
Acenaphthylene	208-96-8	Dibenzo(a,h)anthracene	53-70-3		
Anthracene	120-12-7	Fluoranthene	206-44-0		
Benzo(a)anthracene	56-55-3	Fluorene	86-73-7		
Benzo(a)pyrene	50-32-8	Indeno(1,2,3-cd)pyrene	193-39-5		
Benzo(b)fluoranthene	205-99-2	Naphthalene	91-20-3		
Benzo(ghi)perylene	191-24-2	Phenanthrene	85-01-8		
Benzo(k)fluoranthene	207-08-9	Pyrene	129-00-0		

17. Scheduled chemicals must be managed in accordance with the EPA's scheduled chemical wastes chemical control order 2004, which is available on the EPA website at www.epa.nsw.gov.au/resources/pesticides/scwcco2004.pdf.

The following scheduled chemicals are to be included in the total values specified:

Scheduled chemicals (total)					
Name	CAS Registry Number	Name	CAS Registry Number		
Aldrin	309-00-2	Heptachlor	76-44-8		
Alpha-BHC	319-84-6	Heptachlor epoxide	1024-57-3		
Beta-BHC	319-85-7	Hexachlorobenzene	118-74-1		
Gamma-BHC (Lindane)	58-89-9	Hexachlorophene	70-30-4		
Delta-BHC	319-86-8	Isodrin	465-73-6		
Chlordane	57-74-9	Pentachlorobenzene	608-93-5		
DDD	72-54-8	Pentachloronitrobenzene	82-68-8		
DDE	72-55-9	Pentachlorophenol	87-86-5		
DDT	50-29-3	1,2,4,5-Tetrachlorobenzene	95-94-3		
Dieldrin	60-57-1	2,3,4,6-Tetrachlorophenol	58-90-2		
Endrin	72-20-8	1,2,4-Trichlorobenzene	120-82-1		
Endrin aldehyde	7421-93-4	2,4,5-Trichlorophenoxyacetic acid, salts and esters	93-76-5		

18. Calculated from Guidelines for Drinking Water Quality (WHO 2011).

Waste classification	Criteria ¹ for classification by chemical assessment (any of the alternative options given)	Comments
General solid	1. SCC test values ≤ CT1	TCLP test not required
waste	2. TCLP test values ≤ TCLP1 and SCC test values ≤ SCC1	
	3. TCLP test values \leq TCLP1 and SCC test values $>$ SCC1 ²	Classify as restricted solid or hazardous (as applicable)
		If immobilisation approval applies, classify in accordance with that approval
Restricted solid	1. SCC test values ≤ CT2	TCLP test not required
waste	2. TCLP1 < TCLP test values \leq TCLP2 and SCC test values \leq SCC2	
	3.TCLP test values \leq TCLP2 and SCC1 $<$ SCC test values \leq SCC2	
	4. TCLP1 < TCLP test values ≤ TCLP2 and SCC test values > SCC2 ²	Classify as hazardous. If immobilisation approval applies, classify in accordance with that approval
Hazardous	1. TCLP test values > TCLP 2	
waste	2. TCLP test values ≤ TCLP2 and SCC test values > SCC2	Classify as hazardous if no immobilization approval applies

Table 3: Summary of criteria for chemical assessment to determine waste classification

Notes

- 1. These criteria apply to each toxic and ecotoxic contaminant present in the waste (see Tables 1 and 2).
- 2. In certain cases the EPA will consider specific conditions, such as segregation of the waste from all other types of waste in a monofill or monocell in order to achieve a greater margin of safety against a possible failure of the immobilisation in the future. Information about the construction and operation of a monofill/monocell is available in the *Draft Environmental Guidelines for Industrial Waste Landfilling* (EPA 1998).

APPENDIX G

FIELD RECORD FORMS / CALIBRATION CERTIFICATES

Site Inspection Daily Worksheet Record

PROJECT NAME: DC)	PROJECT NO: ES 8320
CLIENT: Eloura Holding	S DATE: 12-08-2021
SITE ADDRESS: 5-9 Croyd	on steet LAKEMBAN
SITE CONTACT:	PHONE:
AARGUS REPRESENTATIVE: SAANS	BIN SULEMAN
TITLE: Environmental Ere	meer PHONE:
FIELD NOTES:	
Start Time 10:00 Am	Finish Time 2:00 PM
Weather Sunny/clear sky Wind Direction SSE Humidity 28%	Rainfall (mm) Wind Speed II km (h
Odours Present None	Staining Present None
· · · · · · · · · · · · · · · · · · ·	
Actions	
	Equipment anoite showed, trovel, eekf
Machinery onsite	
Site Safety Induction	Stormwater Control
Dust Suppression	Traffic Control
-	

This PID has been performance checked/calibrated as follows:

	Calibrate 0.0ppm Calibrate 99.3 ppm isobutyler Charged Filter check Lamp check	Readin <u>g O.D</u> ppm ne Readin <u>g N.Y</u> ppm	La been and a second
Date:	12/08/2021		
Checked I	DY. SAAD BIN SUL	EMAN	
Signature:_	Aff	- , ,	

Please check that the following items are contained within the PID Equipment Register

ď PID carry. case

Model 580 EZ PID meter

Cí Charger

Adapter for charger

Calibration tube

Sample Probe

Water Filter Trap

☑ Computer cable connector

Floppy disk software

Serial Number: Local gelability of

ES 8320 LAKEMBA

PID Measurements

PID Monitor Description......

Aargus

Model 580 EZ PID meter

Location	' PD (ppm)	Location	PID (ppm)	Location 2 15	PD (ppm)
SI	0.6	5 15	0.7		
Location	PID (ppth)	Location	PID (ppm)	Location	PD (ppm)
S 2	0.9	S 16	0,1		
Location	PID (ppm)	Location	PID (ppm)	Location	PD (ppm)
S 3	0.2	DI	0.4		
Location	PID (ppm)	Location	PID (ppm)	Location -	PID level
54	0.3	SSI	0.3		
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
55	0.1				
Location	PID (ppm) v	Location	PID (ppm)	Location 2	PD (mm)
56	0.1				
Location	PID (ppm) x	Location	PID (ppm)	Location	PD (ppm) X1
S7	0.4				
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
58	6.2				
Location	PID (ppm)	Location	PD (ppm)	Location	PD (ppn)
59	0.1				
Location	PD (ppm)	Location	PID (ppm)	Location	PID (opm)
S 10(F)	6.2	S10(N)	0.7		
Location	PID (ppm)	Location	PID (ppm)	Location	PD (ppm)
11 2	0.3				
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
S' 12	0.1				
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
S 13	0.4				
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)
S 14	0.1				
Location	PID (ppm)	Location	PID (ppm)	Location	PID (ppm)

APPENDIX H

LABORATORY TECHNICAL INFORMATION

Recommended Holding Times and Preservations for Soil and Air

The bottles, preservation and holding times following are for the ALS Environmental operations excluding the ALS Water Resources Group (WRG). The ALS operations covered by this document include;

Adelaide

Unit 2, 1 Burma Road Pooraka, Adelaide, SA 5095 P +6- 8-8162-5130 ALSEnviro.Adelaide@alsglobal.com

Brisbane

2 Byth Street (Corner Byth and Shand St) Stafford QLD 4053 P +61-7-3243-7222 ALSEnviro.Brisbane@alsglobal.com

Darwin

4/16 Charlton Court Woolner, NT 0820 P +61-488-073-271 ALSEnviro.Darwin@alsglobal.com

Gladstone

46 Callemondah Drive Clinton Gladstone, QLD 4680 P +61-7-4971-5600 ALSEnviro.Gladstone@alsglobal.com

Mackay 78 Harbour Road Mackay, QLD 4740 P +61-7-4944-0177 ALSEnviro.Mackay@alsglobal.com

Melbourne

2-4 Westall Road Springvale VIC 3171 P +61-3-8549-9600 ALSEnviro.Melbourne@alsglobal.com

ludgee

29 Sydney Road Mudgee NSW 2850 P +61-2-6372-6735 ALSEnviro.Mudgee@alsglobal.com

Newcastle

5 Rosegum Road Warabrook NSW 2304 P +61-2-4968-9433 ALSEnviro.Newcastle@alsglobal.com

Nowra 4/13 Geary Place North Nowra NSW 2541 P +61-2-4423-2063 ALSEnviro.Nowra@alsglobal.com

Perth 10 Hod Way Malaga WA 6090 P +61-8-9209-7655 ALSEnviro.Perth@alsglobal.com

Roma

Lot 4, 73 Beaumont Drive Roma QLD 4455 P +61-7-4622-8978 ALSEnviro.Roma@alsglobal.com

Sydney 277-289 Woodpark Road Smithfield NSW 2164 P +61-2-8784-8555 ALSEnviro.Sydney@alsglobal.com

Townsville

14-15 Desma Court Bohle, QLD 4818 P +61-7-4796-0600 ALSEnviro.Townsville@alsglobal.com

Wollongong

99 Kenny Street Wollongong NSW 2500 P +61-2-4225-3125 ALSEnviro.Wollongong@alsglobal.com

SOIL AND SEDIMENT SAMPLE CHILLING AND SUBMISSION

Most soils should be chilled to $<4^{\circ}$ C or $<6^{\circ}$ C (guideline dependent) and transported to the laboratory within 24 hours. Sediments may also benefit from being frozen. ALS recommends placing samples on ice immediately upon sampling for best practice chilling with either repacking into another esky or draining of free water and replacement of ice just prior to dispatch. Chilling overnight in a fridge may also benefit. The post-chilling addition of ice bricks is also recommended where samples are air freighted or dispatched long distance and where couriers will not freight ice.

Please note that where possible samples should be submitted to the laboratory with at least half the recommended holding time remaining and it is preferable to avoid submitting holding time critical tests and full VOC suites late on Fridays without prior arrangement.

GENERAL NOTES

The following soil testing services are centralized in specialist laboratory locations. These tests require additional separate jars or bags to optimize service delivery and holding time compliance;

- Dioxins, Total S, TOC, TBT (Brisbane),
- PFOS/PFOA/AFFFs, PBDEs, Explosives, Herbicides, Pesticides and Ultra trace Organics (Sydney).
- Sizings, Asbestos and Foreign Materials Testing (Newcastle);
- TRH Speciation (Perth and Melbourne),
- ASS/AMD (Perth and Brisbane).

KEY G Glass G(T) Glass Jar with Teflon Lined Lid PB (ZH) Zero Headspace required Plastic (Polyethylene) Bag HVAS PTFF High Volume Air Sampler Paper Polytetrafluoroethylene Filter PUF Ρ Plastic Container Polyurethane Filter

> RIGHT SOLUTIONS | RIGHT PARTNER www.alsglobal.com

Recommended Holding Times and Preservations for Soil and Air

SOIL SAMPLES						
Parameter		ALS Preferred Container	Preservation	Holding Time	1	Reference
INORGANICS, METALS, R	RADION	IUCLIDES, ACID SUL	FATE SOILS AND PHYSIC	AL PARAMETERS		
General Anions and Cations: Chloride, Bromide, Fluoride, Sulfate, CEC & exchangeable Cations		PB, P or G	Chill, preferably to <6°C	28 days (4)	1	NEPM 2013
Asbestos		PB (double bagged)	Nil	Indefinite	1	AS4964-2004
Cyanide		P or G	Chill, Store in dark	14 days (4)	1	NEPM 2013
Electrical conductivity		PB, P or G	Chill, preferably to <6°C	7 days (4)	1	NEPM 2013
Gross alpha, Gross beta		PB, P or G	Nil	180 days	 	SO9696, ISO9697, ASTM D7283-06.
Hexavalent Chromium (Alkali	extract)	P or G	Chill, Store in dark	28 days (plus 7 for extra	act) I	NEPM 2013
Metals - General		PB, P or G	NII Chill Store in dark	6 months	1	NEPM 2013
Opt	tion 1		Chill Store in dark	28 uays		
Methyl Mercury Opt	tion 2	G(T)	Freeze Store in dark	8 months		Horvat et al. 1993
Moisture Content		PB. P or G	Chill, preferably to $<6^{\circ}C$	14 days		NEPM 2013
Opt Organic Carbon / TOC	tion 1	G	Chill, to <6°C store in dark	28 days	1	NEPM 2013
Opt	tion 2	G	Freeze for sediments	6 months	1	NAGD 2009
pH		PB, P or G	Chill, preferably to <6°C	7 days	1	NEPM 2013
Radium 226, 228		PB or G	Nil	180 days		SO10703, ASTM D7283-06.
SPOCAS TOS	tion 1	PB (exclude air)	Freeze	Indefinite	/	AS4969.1-2008
Chromium Suite Opt	tion 2		Chill, preferably to <6°C	24 hours		
Opt	tion 3	DD av C	Dry at 80°C	Indefinite		
Sizings and Foreign Material	Tests	PB or G	Chill proforably to <6°C		l (hared)	NAGD 2009 NEPM 2013 plus in house
Sulfide		PB or G	Chill preferably to $< 6^{\circ}$ C	28 days (if Total S hold' time met)		NEPM 2013 plus in house
ORGANICS - SEMIVOLATI		MPOUNDS (SVOCS)				
General less persistent Semi- Volatile Organic chemicals including: • Carbamate Pesticides • Explosive residues • OC, OP Pesticides & PCBs • Phenoxy acid Herbicides • General Herbicides		G(I)	Place immediately in the esky and chill to <6°C	(plus holding of extracts typically for up to 40 days)		NEPM 2013
 PAHs and Phenols Phthalate Esters Pyrethroids (Synthetic) Semi Volatile Chlorinat Compound Tributyl Tin (TBT) Dioxins & Furans & PCBs PBDEs 	ted	G(T) G(T)	using ice. Avoid exposure to light	1 year in dark, freeze to -10°C		USEPA 1613 USEPA 1614
PFOS & PFOA/ 6:2-FtS / AFFFs	S	G(T)	France within 12 hours of	6 months	 	In house - POPs
PAHs and PCBs	eriois,	G(T)	sampling for sediments	56 days (plus 40 days for extracts)		
ORGANICS - VOLATILE C	OMPO	UNDS (VOCS)				
VOCs except vinyl chloride, s and/or 2-chloroethyl vinyl eth	styrene her	G(T)	Rapidly sample, minimize headspace and Chill to	14 days	1	NEPM 2013
Vinyl chloride and styrene		G(T)	<6°C. Avoid exposure to light	<mark>7 days (Previously 14 under NEPM 1999)</mark>	days 1	NEPM 2013
AMBIENT AIR, SOIL GA	AS AN	D OCCUPATIONA	L HYGIENE			
ORGANICS - VOLATILE A	ND SE	MIVOLATILE COMPO	OUNDS			
Parameter		Media	Preservation	Holding Time	Refere	nce
VOCs in whole air samples		Silonite Canister	Nil	30 days	USEPA T	O15r
VOCs on Sorbents		Charcoal Tubes/ Passive Badge	Nil	30 Days	NIOSH 1	500/1501/1003
Semi-Volatile Organics includ PAHs	ling:	XAD-2 Resin	Protect from light.	7-14 Days	USEPA T NIOSH 5	O4A/TO10A/TO13A 515/5517
Chlorinated Benzenes	-	PTFE/GFF/MCE Filters	Store in the dark	7 Davs	NIOSH 5	515/5517
Chlorinated Phenols		PUF	submit as soon as	7 Davs	USEPA T	04A/T013A
		HVAS	μοσοισια	7 Days	USEPA T	04A/T013A

NOTES

1.

2

Samples for ZHE TCLP or ASLP require a separate additional jar. TCLP and other leaching procedures need to be conducted within the solid sample holding time of the analyte of interest. When a moisture determination is used for dry weight basis reporting, no holding time applies when performed on the same day as the chemical analytes of interest. Holding times for extracted parameters (e.g. Chloride, Bromide, EC, Sulfate, Sulfide & Cyanide) are until extraction. Extract solution holding times also apply. 3. 4.

> **RIGHT SOLUTIONS | RIGHT PARTNER** www.alsglobal.com

Analyte	Method	APHA/USEPA Method
C ₆ -C ₉ − 1999 NEPM Fractions TRH (Volatile)/BTEX C ₆ -C ₁₀ − 2010 DRAFT NEPM Fractions	10g soil extracted with 20mL methanol, tumbled for 1 hour, and analysed with solvent and instrument check surrogates. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water direct injection of supplied sample (unopened) and analysis with solvent and instrument check surrogates. Analysis by capillary column Purge and Trap GCMS (mgt LabMark in-house method numbers Method: E029/E016 BTEX, Method: E004 Petroleum Hydrocarbons (TPH), Method: LM-LTM-ORG2010, Method: E005 Moisture Content). Owing to the differential responses of mass spectrometric detectors towards aliphatic and aromatic compounds, it is essential that the standard contain representatives of both groups. This standard should therefore consist of about 40% aromatic and 60% aliphatic target analytes, to be representative of a typical Australian fuel. The aromatic compounds shall comprise the components of BTEX. The aliphatics shall comprise equal proportions of all n-alkanes in the C6 to C10 range.	USEPA Method 8260B
Total Recoverable Hydrocarbons C ₁₀ - C ₃₆ – 1999 NEPM Fractions >C ₁₀ -C ₄₀ – 2010 DRAFT NEPM Fractions	Soil - 10g soil and anhydrous sodium sulfate extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is taken for analysis. Water - One 250ml of water sequentially extracted in a separatory funnel three times with 20mL dichloromethane. Analysis by capillary column GC/FID (mgt LabMark in-house method numbers Method: E004 Petroleum Hydrocarbons (TPH), Method: LM-LTM-ORG2010, Method: E005 Moisture Content)	USEPA Method 8015C
TPH (Silica Gel)	Exchange an aliquot of sample extract into a suitable solvent for clean-up. For example, a 1:1 dichloromethane/acetone extract should be exchanged into a suitable non-polar solvent to allow for removal of polar substances. To the solvent-exchanged extract add an appropriate weight of silica gel. Mix the extract and silica gel thoroughly (e.g. with vortex mixer) and allow the sorbent to settle before removing a portion of the extract for analysis. (mgt LabMark in-house method numbers Method: LM-LTM-ORG2010, Method: E005 Moisture Content)	USEPA Method 3630C
Phenols/PAH	Soil - 10g soil, surrogates, mixed with anhydrous sodium sulfate and extracted with 20mL dichloromethane/acetone (1:1), and tumbled for a minimum of 1 hour. Clay samples must be completely disintegrated before an aliquot is	USEPA Method 8270D

Analyte	Method	APHA/USEPA Method
	taken for analysis. Water - 250ml water sample plus surrogates triple extracted with dichloromethane (base and neutrals). Analysis by capillary column GC/MS (mgt LabMark in-house Methods E008.1, E008.2, E015.1, E015.2, E017.1 and E017.2, E016.1, E016.2, E017.1 and E017.2, E007.1, E007.2, E015.1, E015.2, E017.1 and E017.2 Method: E005 Moisture Content).	
Total Metals (As, Cd, Cr, Cu, Ni, Pb, Zn)	A 0.5gm portion of soil undergoes acidic microwave digestion. Analysis by ICP/MS.(mgt Labmark in-house method E022.2).	USEPA Method 6020A
Total Mercury (Hg)	0.5g soil acidic microwave digestion. Analysis by FIMS. (mgt Labmark in-house method E026.2).	USEPA Method 7471B
Filtered Metals (As, Cd, Cr, Cu, Ni, Pb ,Zn)	Filtered (0.45mm) and acidified in the field prior to analysis. Analysis by ICP/MS. (mgt LabMark in- house method E022.1).	USEPA Method 6020A
Filtered Metals (Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mo, Ni)	Filtered (0.45mm) and acidified in the field prior to analysis. Analysis by ICP/MS. (mgt LabMark in- house method E022.1).	USEPA Method 6020A
Total Metals (Al, As, Be, Cd, Cr, Co, Cu, Fe, Pb, Mo, Ni)	Acidified in the field prior to analysis and digested in the laboratory using aqua regia. Analysis by ICP/MS. (mgt LabMark in-house method E022.1).	USEPA Method 6020A
Filtered Mercury (Hg)	Filtered, oxidation and final reduction. Analysis by FIMS. (mgt LabMark in-house method E022.1).	USEPA Method 7471B
Conductivity	Direct measurement using a calibrated meter and electrode. (mgt LabMark in-house method E032 Electrical conductivity (EC)).	APHA Method 2520 B
рН	Direct measurement using a calibrated meter and electrode. (mgt LabMark in-house method E018 pH).	APHA Method 4500-H ⁺
Suspended Solids (SS)	Gravimetric measurement of the residue filtered through a GFC filter. (mgt LabMark in-house method 4100 Total Suspended Solids dried at 103-105°C).	APHA Method 2540 D
Ammonia (as N)	Alkaline phenol and hypochlorite react with ammonia to form indophenol blue that is proportional to the ammonia concentration that is determined colorimetrically. (mgt LabMark in- house method E036/E050 Ammonia as N).	APHA Method 4500-N
Phosphorus (as P)	Acid digestion of phosphorus species to form a molybdophosphoric acid complex that is reduced to molybdenum blue which is proportional to the phosphorus concentration that is determined colorimetrically. (mgt LabMark in-house method E038 /E052 Total Phosphorus (as P)).	APHA Method 4500-P

APPENDIX I

LABORATORY CERTIFICATES

CERTIFICATE OF ANALYSIS

Work Order	ES2129767	Page	: 1 of 7
Client	AARGUS PTY LTD	Laboratory	Environmental Division Sydney
Contact	: ALL REPORTS (CYNTHIA)	Contact	Customer Services ES
Address	: PO BOX 398	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	DRUMMOYNE NSW, AUSTRALIA 2047		
Telephone	: +61 1300137038	Telephone	: +61-2-8784 8555
Project	: ES8320 DSI	Date Samples Received	: 16-Aug-2021 18:30
Order number	:	Date Analysis Commenced	: 18-Aug-2021
C-O-C number	:	Issue Date	24-Aug-2021 18:57
Sampler	: SBS		Hac-MRA NATA
Site	: LAKEMBA		
Quote number	: EN/222		Apprediction No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alana Smylie	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation. Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present) The Asbestos (Fines and Fibrous) weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos Percentages for Asbestos content in ACM are based on the 2013 NEPM default values. All calculations of percentage Asbestos under this method are approximate and should be used as a ouide only.
 - All calculations of percentage Aspestos under this method are approximate and should be used as a
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page	: 3 of 7
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS1					
		Samplii	ng date / time	12-Aug-2021 00:00					
Compound	CAS Number	LOR	Unit	ES2129767-001					
				Result					
EA055: Moisture Content (Dried @ 105-110°C)									
Moisture Content		1.0	%	6.8					
EA200: AS 4964 - 2004 Identification of Asbestos in Soils									
Asbestos Detected	1332-21-4	0.1	g/kg	No					
Asbestos Type	1332-21-4	-		-					
Asbestos (Trace)	1332-21-4	5	Fibres	No					
Sample weight (dry)		0.01	g	645					
Synthetic Mineral Fibre		0.1	g/kg	No					
Organic Fibre		0.1	g/kg	No					
APPROVED IDENTIFIER:		-		A. SMYLIE					
EA200N: Asbestos Quantification (non-N	IATA)								
ØAsbestos (Fines and Fibrous	1332-21-4	0.0004	g	<0.0004					
<7mm)									
Ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001					
Ø Asbestos Containing Material	1332-21-4	0.1	g	<0.1					
Ø Asbestos Containing Material	1332-21-4	0.01	% (w/w)	<0.01					
(as 15% Asbestos in ACM >7mm)									
Ø Weight Used for % Calculation		0.0001	kg	0.645					
Ø Fibrous Asbestos >7mm		0.0004	g	<0.0004					
EG005(ED093)T: Total Metals by ICP-AES	S								
Arsenic	7440-38-2	5	mg/kg	10					
Cadmium	7440-43-9	1	mg/kg	<1					
Chromium	7440-47-3	2	mg/kg	13					
Copper	7440-50-8	5	mg/kg	17					
Lead	7439-92-1	5	mg/kg	80					
Nickel	7440-02-0	2	mg/kg	2					
Zinc	7440-66-6	5	mg/kg	41					
EG035T: Total Recoverable Mercury by I	FIMS								
Mercury	7439-97-6	0.1	mg/kg	0.2					
EP066: Polychlorinated Biphenyls (PCB)									
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1					
EP068A: Organochlorine Pesticides (OC))								
alpha-BHC	319-84-6	0.05	mg/kg	<0.05					
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05					
beta-BHC	319-85-7	0.05	mg/kg	<0.05					

Page : 4 of 7 Work Order : ES2129767 Client : AARGUS PTY LTD Project : ES8320 DSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS1	 	
		Sampling date / time		12-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2129767-001	 	
				Result	 	
EP068A: Organochlorine Pesticides (OC) - Continued					
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	0.8	 	
Pyrene	129-00-0	0.5	mg/kg	0.9	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	0.6	 	

Page	5 of 7
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS1	 	
		Samplii	ng date / time	12-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2129767-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	0.6	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	2.9	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	0.7	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	1.0	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.3	 	
EP080/071: Total Petroleum Hydrocarb	oons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	าร			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
		0.2	mg/kg	<0.2	 	
· I otal Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	

Page	: 6 of 7
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	ES8320 DSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS1				
		Sampli	ng date / time	12-Aug-2021 00:00				
Compound	CAS Number	LOR	Unit	ES2129767-001				
				Result				
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	96.2				
EP068S: Organochlorine Pesticide Su	urrogate							
Dibromo-DDE	21655-73-2	0.05	%	88.7				
EP068T: Organophosphorus Pesticid	e Surrogate							
DEF	78-48-8	0.05	%	75.8				
EP075(SIM)S: Phenolic Compound St	urrogates							
Phenol-d6	13127-88-3	0.5	%	85.6				
2-Chlorophenol-D4	93951-73-6	0.5	%	85.4				
2.4.6-Tribromophenol	118-79-6	0.5	%	75.8				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	99.6				
Anthracene-d10	1719-06-8	0.5	%	98.2				
4-Terphenyl-d14	1718-51-0	0.5	%	84.4				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	112				
Toluene-D8	2037-26-5	0.2	%	124				
4-Bromofluorobenzene	460-00-4	0.2	%	107				
Analytical Results								

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results			
EA200: AS 4964 - 2004 Identification of Asbestos in Soils					
EA200: Description	SS1 - 12-Aug-2021 00:00	Soil sample.			

Page	: 7 of 7
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surrogate	•		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200N: Asbestos Quantification (non-NATA)

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

QUALITY CONTROL REPORT

Work Order	ES2129767	Page	: 1 of 9	
Client	AARGUS PTY LTD	Laboratory	: Environmental Division Syd	Iney
Contact	: ALL REPORTS (CYNTHIA)	Contact	: Customer Services ES	
Address	: PO BOX 398 DRUMMOYNE NSW, AUSTRALIA 2047	Address	: 277-289 Woodpark Road S	mithfield NSW Australia 2164
Telephone	+61 1300137038	Telephone	: +61-2-8784 8555	
Project	: ES8320 DSI	Date Samples Received	: 16-Aug-2021	AMUUU.
Order number	:	Date Analysis Commenced	: 18-Aug-2021	
C-O-C number	:	Issue Date	: 24-Aug-2021	NATA
Sampler	: SBS			Hac-MRA NAIA
Site	: LAKEMBA			
Quote number	: EN/222			Accreditation No. 925
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alana Smylie	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 9
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	EG005(ED093)T: Total Metals by ICP-AES (QC Lot: 3859363)								
ES2129766-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	4	2	72.3	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	8	8	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	9	10	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	36	36	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	257	266	3.5	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	1200	987	19.4	0% - 20%
ES2129792-049	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	37	35	5.3	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	12	12	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	10	10	0.0	No Limit	
	EG005T: Lead	7439-92-1	5	mg/kg	11	11	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	6	6	0.0	No Limit
EA055: Moisture Co	ntent (Dried @ 105-110°C)(QC Lot: 3859367)							
ES2129780-002	Anonymous	EA055: Moisture Content		0.1	%	48.6	48.0	1.1	0% - 20%
ES2129792-055	Anonymous	EA055: Moisture Content		0.1	%	27.4	26.9	2.0	0% - 20%
EG035T: Total Reco	verable Mercury by FIMS(QC Lot: 3859364)							
ES2129766-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	2.0	2.2	11.2	0% - 20%
ES2129792-049	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP066: Polychlorina	ted Biphenyls (PCB) (QC L	ot: 3855160)							
ES2130166-005	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	0.4	0.4	0.0	No Limit
ES2130166-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	0.2	0.3	62.9	No Limit

Page	: 3 of 9
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochlo	rine Pesticides (OC) (QC L	ot: 3855159)							
ES2130166-005	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES2130166-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page	: 4 of 9
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Sub-Matrix: SOIL					Laboratory L	Duplicate (DUP) Report	t		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochlo	rine Pesticides (OC) (QC L	ot: 3855159) - continued							
ES2130166-001	Anonymous	EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ons (QC Lot: 3855158)							
ES2130166-005	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2130166-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	5 of 9
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 3855158) - continued							
ES2130166-001	Anonymous	EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene TEO (zero)		0.5	ma/ka	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pot	roloum Hydrocarbons (OC			0.0		0.0	0.0	0.0	
EF060/071. Total Fell		E01: 3633137)		100	malka	190	140	26.2	No Limit
E32130100-005	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	160	140	20.3	NO LIMIL
		EP0/1: C29 - C36 Fraction		100	mg/kg	190	130	36.3	NO LIMIL
500400400 004	A	EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	NO LIMIT
ES2130166-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	NO LIMIT
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Petr	roleum Hydrocarbons (QC	Lot: 3856620)							
ES2129832-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2130211-003	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 3855157)							
ES2130166-005	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	320	240	30.8	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2130166-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	120	160	30.8	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 3856620)					1 1		
ES2129832-001	Anonymous	EP080: C6 - C10 Eraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit
ES2130211-003	Anonymous	EP080: C6 - C10 Fraction	C6 C10	10	ma/ka	<10	<10	0.0	No Limit
EP080: BTEXN (QC)	ot: 3856620)			-	5 5				
ES2129832-001	Anonymous	EP080 ⁻ Benzene	71-43-2	0.2	ma/ka	<0.2	<0.2	0.0	No Limit
			108-88-3	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP080: meta_ & para_Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		El 000. meta- a para-xylene	106-42-3	0.0		0.0	0.0	010	
		EP080: ortho_Xvlene	95-47-6	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP080: Nanhthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2130211-003	Anonymous	EP080: Represe	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
			108-88-3	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP080: Fibulbonzono	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		ED080: meta & para Yulone	100 20 2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-30-3	0.0	1119/119	-0.0	-0.0	0.0	
		EP080: ortho Xulene	95-47-6	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP080: Nanhthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES(QCLot	: 3859363)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	91.1	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	70.0	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	92.2	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	94.9	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	89.1	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	83.8	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	79.0	66.0	133
EG035T: Total Recoverable Mercury by FIMS(Q0	CLot: 3859364)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	94.8	70.0	125
EP066: Polychlorinated Biphenyls (PCB) (QCLot:	3855160)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	89.0	62.0	126
EP068A: Organochlorine Pesticides (OC) (QCLot:	: 3855159)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	82.7	69.0	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	84.0	65.0	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	67.0	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.5	68.0	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.2	65.0	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	67.0	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.1	69.0	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	62.0	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	63.0	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	99.3	66.0	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.7	64.0	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	91.9	66.0	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	81.3	67.0	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.4	67.0	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	105	69.0	115
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.2	69.0	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	76.1	56.0	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.3	62.0	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	88.6	66.0	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	91.3	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	87.4	54.0	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 3855158)							

Page	: 7 of 9
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ns (QCLot: 3855158) - co	ontinued						
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	88.2	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	93.7	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	94.5	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	93.4	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	92.7	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	99.0	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	97.9	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	98.1	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	90.7	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	95.1	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	96.3	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	ma/ka	<0.5	6 ma/ka	98.3	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	ma/ka	<0.5	6 mg/kg	98.0	70.0	126
EP075(SIM): Indeno(1.2.3 cd)pyrene	193-39-5	0.5	ma/ka	<0.5	6 mg/kg	86.2	61.0	121
EP075(SIM): Dibenz(a h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	92.3	62.0	118
EP075(SIM): Benzo(a.h.i)pervlene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	84.0	63.0	121
EP080/071: Total Betroleum Hydrocarbons (OCI	ot: 3855157)							
EP071: C10 - C14 Fraction		50	ma/ka	<50	300 ma/ka	103	75.0	129
EP071: C15 - C28 Fraction		100	ma/ka	<100	450 mg/kg	101	77.0	131
EP071: C29 - C36 Fraction		100	ma/ka	<100	300 ma/ka	100	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCI	ot: 3856620)		5 5				-	
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	105	68.4	128
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 Eractions (OCI	ot: 3855157)	0 0					
EP071: >C10 - C16 Fraction		50	ma/ka	<50	375 ma/ka	105	77.0	125
EP071: >C16 - C34 Fraction		100	ma/ka	<100	525 ma/ka	99.8	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	100	63.0	131
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 Fractions (QCI	ot: 3856620)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	105	68.4	128
EP080: BTEXN (QCLot: 3856620)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	104	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	107	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	93.1	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	101	66.0	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	102	68.0	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	88.8	63.0	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG005(ED093)T: To	otal Metals by ICP-AES (QCLot: 3859363)								
ES2129766-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	91.2	70.0	130		
		EG005T: Cadmium	7440-43-9	50 mg/kg	92.7	70.0	130		
		EG005T: Chromium	7440-47-3	50 mg/kg	92.7	68.0	132		
		EG005T: Copper	7440-50-8	250 mg/kg	90.7	70.0	130		
		EG005T: Lead	7439-92-1	250 mg/kg	97.9	70.0	130		
		EG005T: Nickel	7440-02-0	50 mg/kg	91.0	70.0	130		
		EG005T: Zinc	7440-66-6	250 mg/kg	# Not	66.0	133		
					Determined				
EG035T: Total Rec	coverable Mercury by FIMS (QCLot: 3859364)								
ES2129766-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	98.6	70.0	130		
EP066: Polychlorin	ated Biphenyls (PCB) (QCLot: 3855160)								
ES2130166-001	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	76.9	70.0	130		
EP068A: Organoch	lorine Pesticides (OC) (QCLot: 3855159)								
ES2130166-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	94.0	70.0	130		
		EP068: Heptachlor	76-44-8	0.5 mg/kg	84.4	70.0	130		
		EP068: Aldrin	309-00-2	0.5 mg/kg	92.6	70.0	130		
		EP068: Dieldrin	60-57-1	0.5 mg/kg	98.1	70.0	130		
		EP068: Endrin	72-20-8	2 mg/kg	87.4	70.0	130		
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	84.4	70.0	130		
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 3855158)								
ES2130166-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	102	70.0	130		
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	112	70.0	130		
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3855157)								
ES2130166-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	109	73.0	137		
		EP071: C15 - C28 Fraction		3100 mg/kg	104	53.0	131		
		EP071: C29 - C36 Fraction		2060 mg/kg	109	52.0	132		
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3856620)								
ES2129832-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	86.9	70.0	130		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI	Lot: 3855157)							
ES2130166-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	106	73.0	137		
		ED071: > C16 C24 Erection		4320 ma/ka	110	53.0	131		
		EP071. >C18 - C34 Flaction		4020 mg/ng	110	00.0	101		

Page	: 9 of 9
Work Order	ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Sub-Matrix: SOIL	Sub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 3856620)								
ES2129832-001	Anonymous	EP080: C6 - C10 Fraction 0	C6_C10	37.5 mg/kg	86.0	70.0	130			
EP080: BTEXN (Q	CLot: 3856620)									
ES2129832-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	86.6	70.0	130			
		EP080: Toluene	108-88-3	2.5 mg/kg	93.3	70.0	130			
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	86.3	70.0	130			
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	89.8	70.0	130			
		1	106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	95.0	70.0	130			
		EP080: Naphthalene	91-20-3	2.5 mg/kg	83.3	70.0	130			

	QA/QC Compliance	Assessment to assist with	n Quality Review	
Work Order	ES2129767	Page	: 1 of 6	
Client		Laboratory	: Environmental Division Sydney	
Contact	: ALL REPORTS (CYNTHIA)	Telephone	: +61-2-8784 8555	
Project	: ES8320 DSI	Date Samples Received	: 16-Aug-2021	
Site	: LAKEMBA	Issue Date	: 24-Aug-2021	
Sampler	: SBS	No. of samples received	: 1	
Order number	:	No. of samples analysed	: 1	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005(ED093)T: Total Metals by ICP-AES	ES2129766001	Anonymous	Zinc	7440-66-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:	× = Holding	time breach	✓ =	Within holding	time.
	· · · · · · · · · · · · · · · · · · ·				

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) SS1	12-Aug-2021				21-Aug-2021	26-Aug-2021	✓
EA200: AS 4964 - 2004 Identification of Asbestos in Soils							
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200) SS1	12-Aug-2021				18-Aug-2021	08-Feb-2022	✓
EA200N: Asbestos Quantification (non-NATA)							
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200N) SS1	12-Aug-2021				18-Aug-2021	08-Feb-2022	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) SS1	12-Aug-2021	21-Aug-2021	08-Feb-2022	1	23-Aug-2021	08-Feb-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) SS1	12-Aug-2021	21-Aug-2021	09-Sep-2021	1	24-Aug-2021	09-Sep-2021	✓
EP066: Polychlorinated Biphenyls (PCB)							
Soil Glass Jar - Unpreserved (EP066) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	1	21-Aug-2021	29-Sep-2021	✓
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	1	21-Aug-2021	29-Sep-2021	✓

Page	: 3 of 6
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time	
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM)) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	1	21-Aug-2021	29-Sep-2021	~	
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	~	21-Aug-2021	29-Sep-2021	~	
Soil Glass Jar - Unpreserved (EP080) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	~	23-Aug-2021	26-Aug-2021	✓	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions								
Soil Glass Jar - Unpreserved (EP071) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	1	21-Aug-2021	29-Sep-2021	~	
Soil Glass Jar - Unpreserved (EP080) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	1	23-Aug-2021	26-Aug-2021	~	
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) SS1	12-Aug-2021	20-Aug-2021	26-Aug-2021	1	23-Aug-2021	26-Aug-2021	~	

Page	: 4 of 6
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.					
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analvtical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard

Page	: 5 of 6
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Asbestos Classification and Quantitation per NEPM 2013	* EA200N	SOIL	Asbestos Classification and Quantitation per NEPM with Confirmation of Identification by AS 4964 - Gravimetric determination of Asbestos Containing Material, Fibrous Asbestos, Asbestos Fines and sample weight and calculation of percentage concentrations per NEPM protocols. Asbestos (Fines and Fibrous FA+AF) is reported as the equivalent weight in the sample received after accounting for sub-sampling (where applicable for the <7mm and/or <2mm fractions).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions

Page	: 6 of 6
Work Order	: ES2129767
Client	: AARGUS PTY LTD
Project	: ES8320 DSI

Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and
sediments and sludges			Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered
			and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge,
			sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior
and Trap			to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1
			DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the
			desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2129767

E-mail: cynthia@aargus.netE-mail: ALSEnviro.SycTelephone: +61 1300137038Telephone: +61-2-8784 85Facsimile: +61 1300136038Facsimile: +61-2-8784 85Project: ES8320 DSIPage: 1 of 3Order number:Quote number: EB2017AARGIC-O-C number:QC Level: NEPM 2013 B3	nt : AAF ntact : ALL ress : PO	 Environmental Division Sydney Customer Services ES 277-289 Woodpark Road Smithfield NSW Australia 2164
Project : ES8320 DSI Page : 1 of 3 Order number : Quote number : EB2017AARG C-O-C number : QC Level : NEPM 2013 B3	ail : cynl phone : +61 simile : +61	: ALSEnviro.Sydney@ALSGlobal.com : +61-2-8784 8555 : +61-2-8784 8500
Sampler : LAKEMBA Sampler : SBS	ect : ES8 er number : -C number : : LAK npler : SBS	: 1 of 3 : EB2017AARGUS0001 (EN/222) : NEPM 2013 B3 & ALS QC Standard

Date Samples Received	: 16-Aug-2021 18:30
Client Requested Due	: 24-Aug-2021
Date	

Delivery Details			
Mode of Delivery	: Undefined	Security Seal	: Not Available
No. of coolers/boxes	: 1	Temperature	: 15.3'c - Ice Bricks present
Receipt Detail	:	No. of samples received / analysed	: 1/1

Issue Date

Scheduled Reporting Date

: 17-Aug-2021

24-Aug-2021

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: SOIL

Laboratory sample ID	Sampling date / time	Sample ID	SOIL - EAC Moisture C	SOIL - EA2 Asbestos ir	SOIL - S-1 OC/PCB	SOIL - S-2 8 metals/TI	
ES2129767-001	12-Aug-2021 00:00	SS1	✓	✓	✓	✓	

RH/BTEXN/PAH

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	anika@aargus.net
ALL REPORTS (CYNTHIA)		•••
- *AU Certificate of Analysis - NATA (COA)	Email	cynthia@aargus.net
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	cynthia@aargus.net
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	cynthia@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	cynthia@aargus.net
- A4 - AU Tax Invoice (INV)	Email	cynthia@aargus.net
- Chain of Custody (CoC) (COC)	Email	cynthia@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	cynthia@aargus.net
- EDI Format - XTab (XTAB)	Email	cynthia@aargus.net
Gokul		
 *AU Certificate of Analysis - NATA (COA) 	Email	gokul@aargus.net
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	gokul@aargus.net
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	gokul@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	gokul@aargus.net
- A4 - AU Tax Invoice (INV)	Email	gokul@aargus.net
- Chain of Custody (CoC) (COC)	Email	gokul@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	gokul@aargus.net
- EDI Format - XTab (XTAB)	Email	gokul@aargus.net
MARK KELLY		
 *AU Certificate of Analysis - NATA (COA) 	Email	mark.kelly@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mark.kelly@aargus.net
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mark.kelly@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mark.kelly@aargus.net
- A4 - AU Tax Invoice (INV)	Email	mark.kelly@aargus.net
- Chain of Custody (CoC) (COC)	Email	mark.kelly@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	mark.kelly@aargus.net
- EDI Format - XTab (XTAB)	Email	mark.kelly@aargus.net
NINGYE ZHANG		
 *AU Certificate of Analysis - NATA (COA) 	Email	ningye@aargus.net
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ningye@aargus.net
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ningye@aargus.net
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ningye@aargus.net
- A4 - AU Tax Invoice (INV)	Email	ningye@aargus.net
- Chain of Custody (CoC) (COC)	Email	ningye@aargus.net
- EDI Format - ESDAT (ESDAT)	Email	ningye@aargus.net
- EDI Format - XTab (XTAB)	Email	ningye@aargus.net

SAMPLE? KEEP YES $^{\otimes}$ mole H⁺/tonne Analysis Suite(s) Date ę Sydney ^{Work} Order Reference ES2129767 S8 Environmental Division Laboratory Test Request / Chain of Custody Record Asbestos %w/w ب Email reports: cynthia@aargus.net; gokul@aargus.net; mark kelly@aargus.net;ningye@aargus.net Email invoices: anika@aargus.net; cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; ningye@aargus.net **Results required by: STANDARD** Received by Lakemba ES8320 Signature S 6.30 pm 16 [8 12] Location: Project: :oN doL Disturbed soil sample (small plastic bag) РСВ 12.08.2021 g Air sample, canister SBS ¥ Test required PAH Name Project Manager: Sampling Date: Sampled By: TPH & BTEX ACAN dsD > Vener Undisturbed soil sample (glass ja Disturbed soil sample (glass jar) Other Metals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn) 12.08.2021 Date 02 8784 8500 Aìr Sample type Water (Filled Up) P O Box 398 Tel: 1300 137 038 DRUMMOYNE NSW 1470 Fax: 1300 136 038 USG DSG OTH DSG, DSP Signature Soil SBS FAX: Relinquished by ALS (Australian Laboratory Services) | Environmental 277 - 289 Woodpark Road SMITHFIELD, NSW 2164 12.08.2021 Date Depth (m) Sampling details Water sample, glass bottle Water sample, plastic bottle **AARGUS PTY LTD** Name SAAD PH: 02 8784 8555 ATTN: Samples Receipt 6 Carter Street Lidcombe, NSW 2141 Location Glass vial SS1 egend: М М М ö Ηd 20

Telephone · ± 61-2-8784 8555

Acuantin

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref : ASET95436 / 98616 / 1 - 17 Your ref : ES8320 – DSI - Lakemba NATA Accreditation No: 14484

18 August 2021

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

Attn: Mr Mark Kelly

WORLD RECOGNISED ACCREDITATION

Accredited for compliance with ISO/IEC 17025 - Testing.

Dear Mark

Asbestos Identification

This report presents the results of seventeen samples, forwarded by Aargus Pty Ltd on 16 August 2021, for analysis for asbestos.

1.Introduction:Seventeen samples forwarded were examined and analysed for the presence of asbestos on 18 August 2021.

2. Methods : The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Australian Standard AS 4964 - 2004 and Safer Environment Method 1 as the supplementary work instruction) (Qualitative Analysis only).

The report also provides approximate weights and percentages, categories of asbestos forms appearing in the sample, such as **AF**(Asbestos Fines), **FA**(Friable Asbestos) and **ACM** (Asbestos Containing Material), also satisfying the requirements of the WA/ NEPM Guidelines).

3. Results : Sample No. 1. ASET95436 / 98616 / 1. ES8320 - S1-0-0.1. Approx dimensions 10.0 cm x 10.0 cm x 5.4 cm The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, ceramic tiles, fibre cement* (AF), plastic and plant matter. Chrysotile* (Approximate estimated weight = 0.001g) asbestos detected. Approximate total dry weight of soil = 539.0g. Approximate estimated weight of asbestos in soil in the form of AF = 0.001g. Approximate w/w percentage of asbestos in soil in the form of AF = 0.0002%. Sample No. 2. ASET95436 / 98616 / 2. ES8320 - S2-0-0.1. Approx dimensions 10.0 cm x 10.0 cm x 6.0 cm Approximate total dry weight of soil = 602.0g. The semple consisted of a mixture of clayich sendu soil stones, fragments of cement wood.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: info@ausset.com.au WEBSITE: www.Ausset.com.au

Sample No. 3. ASET95436 / 98616 / 3. ES8320 - S3-0-0.1. Approx dimensions 10.0 cm x 10.0 cm x 5.0 cm The sample consisted of a mixture of clayish sandy soil, stones, fragments of corroded metal, fibre cement* (AF), wood chips and plant matter. Chrysotile* (Approximate estimated weight = 0.003g) asbestos detected. Approximate total dry weight of soil = 497.0g. Approximate estimated weight of asbestos in soil in the form of AF = 0.003g. Approximate w/w percentage of asbestos in soil in the form of AF = 0.001%.

Sample No. 4. ASET95436 / 98616 / 4. ES8320 - S4-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.6 cm Approximate total dry weight of soil = 562.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of brick, cement, paint flakes, plastic, wood chips, animal and plant matter. No asbestos detected.

Sample No. 5. ASET95436 / 98616 / 5. ES8320 - S5-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.4 cm Approximate total dry weight of soil = 639.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of plastic, wood chips and plant matter. No asbestos detected.

Sample No. 6. ASET95436 / 98616 / 6. ES8320 - S6-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.4 cm Approximate total dry weight of soil = 539.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of corroded metal, shale, wood chips and plant matter. No asbestos detected.

Sample No. 7. ASET95436 / 98616 / 7. ES8320 - S8-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm Approximate total dry weight of soil = 513.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter.

No asbestos detected.

Sample No. 8. ASET95436 / 98616 / 8. ES8320 - S8-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.4 cm Approximate total dry weight of soil = 544.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter. No asbestos detected.

Sample No. 9. ASET95436 / 98616 / 9. ES8320 - S9-0-0.1. Approx dimensions 10.0 cm x 10.0 cm x 6.6 cm Approximate total dry weight of soil = 657.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of plastic, wood chips and plant matter. No asbestos detected.

Sample No. 10. ASET95436 / 98616 / 10. ES8320 - S10-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.1 cm Approximate total dry weight of soil = 510.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, glass, wood chips and plant matter. **No asbestos detected.**

Sample No. 11. ASET95436 / 98616 / 11. ES8320 - S11-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.7 cm Approximate total dry weight of soil = 565.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter. **No asbestos detected.**

Sample No. 12. ASET95436 / 98616 / 12. ES8320 - S12-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.9 cm Approximate total dry weight of soil = 588.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of slag, wood chips and plant matter. **No asbestos detected.**

Sample No. 13. ASET95436 / 98616 / 13. ES8320 - S13-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 5.4 cm

Approximate total dry weight of soil = 543.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of glass, paint flakes, plastic, wood chips and plant matter.

No asbestos detected.

Sample No. 14. ASET95436 / 98616 / 14. ES8320 - S14-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.8 cm Approximate total dry weight of soil = 677.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, wood chips and plant matter. **No asbestos detected.**

Sample No. 15. ASET95436 / 98616 / 15. ES8320 - S15-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 6.5 cmApproximate total dry weight of soil = 648.0g. The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement and plant matter.

No asbestos detected.

Sample No. 16. ASET95436 / 98616 / 16. ES8320 - S16-0-0.1.

Approx dimensions 10.0 cm x 10.0 cm x 7.4 cm

Approximate total dry weight of soil = 736.0g.

The sample consisted of a mixture of clayish sandy soil, stones, fragments of wood chips and plant matter.

No asbestos detected.

Sample No. 17. ASET95436 / 98616 / 17. ES8320 - D1.
Approx dimensions 10.0 cm x 10.0 cm x 6.8 cm
Approximate total dry weight of soil = 680.0g.
The sample consisted of a mixture of clayish sandy soil, stones, fragments of cement, slag, wood chips and plant matter.
No asbestos detected.

Reported by,

Mahen De Silva. BSc, MSc, Grad Dip (Occ Hyg) Occupational Hygienist / Approved Identifier. Approved Signatory

Accredited for compliance with ISO/IEC 17025 - Testing.

This report is consistent with the analytical procedures and reporting recommendations in the Western Australia Guidelines for the Assessment Remediation and Management of Asbestos contaminated sites in Western Australia and it also satisfies the requirements of the current NEPM Guidelines. NATA Accreditation does not cover the performance of this service.

Disclaimers;

The approx; weights given above can be used only as a guide. They do not represent absolute weights of each kind of asbestos, as it is impossible to extract all loose fibres from soil and other asbestos containing building material samples using this method. However above figures may be used as closest approximations to the exact values in each case. Estimation and/ or reporting of asbestos fibre weights in asbestos containing materials and soil is out of the Scope of the NATA Accreditation. NATA Accreditation only covers the qualitative part of the results reported. This weight disclaimer also covers weight / weight percentages if given.

ACM - Asbestos Containing Material - Products or materials that contain asbestos in an inert bound matrix such as cement or resin. Here taken to be sound material, even as fragments and not fitting through a 7mm X 7 mm sieve.

- AF -Includes asbestos free fibres, small fibre bundles and also ACM fragments that pass through a 7mm X 7 mm sieve.
- FA -Friable asbestos material such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products.
- ^ denotes loose fibres of relevant asbestos types detected in soil/dust.
- * denotes asbestos detected in ACM in bonded form.
- #denotes friable asbestos as soft fibro plaster and/ or highly weathered ACM that will easily crumble.

The results contained in this report relate only to the sample/s submitted for testing. Australian Safer Environment & Technology accepts no responsibility for whether or not the submitted sample/s is/are representative. Results indicating "No asbestos detected" indicates a reporting limit specified in AS4964 -2004 which is 0.1g/ Kg (0.01%). Any amounts detected at assumed lower level than that would be reported, however those assumed lower levels may be treated as "No asbestos detected" as specified and recommended by A4964-2004. Trace / respirable level asbestos will be

reported only when detected and trace analysis have been performed on each sample as required by AS4964-2004. When loose asbestos fibres/ fibre bundles are detected and reported that means they are larger handpicked fibres/ fibre bundles, and they do not represent respirable fibres. Dust/soil samples are always subjected to trace analysis except where the amounts involved are extremely minute and trace analysis is not possible to be carried out. When trace analysis is not performed on dust samples it will be indicated in the report that trace analysis has not been carried out due to the volume of the sample being extremely minute.

Estimation of asbestos weights involves the use of following assumptions;

Volume of each kind of Asbestos present in broken edges have been visually estimated and its been assumed that volumes remain similar throughout the binding matrix and those volumes are only approximate and not exact. Material densities have been assumed to be similar to commonly found similar materials and may not be exact.

All samples indicating "No asbestos detected" are assumed to be less than 0.001% for friable AF and FA portions detected and 0.01% for ACM detected unless the approximate weight is given.

ASE(95436/98616/1-17

AARGUS PTY LTD

6 Carter Street LIDCOMBE NSW 2141

P O Box 398 Tel: 1300 137 038 DRUMMOYNE NSW 1470 Fax: 1300 136 038

Laboratory Test Request / Chain of Custody Record

Email to: cynthia@aargus.net; gokul@aargus.net; mark.kelly@aargus.net; sara@aargus.net

												1	ot	1
TO:	ASET - Australian S	afer Environmen	t & Technology F	Pty Ltd, Sydney		Sampling Dat	te: 12.08.2021		Job No:	ES8320				
	Suite 710 / 90 Georg	e Street	PO Box 1644			Complete Day	CDC		Declast	DCI				
	HORNSBY, NSW 207	7	HORNSBY WE	STRIELD NSW 1635	•	Sampled By:	282		Project:	05				
PH-	02 9987 2183			FAX 02 9	987 2151	Project Mana	ger: MK		Location:	Lakemba				
ATTN	: Samples Receipt			EMAIL ase	@bigpond.net.au		3							
						• • • • • •	Desults	no musino di l	NU CT					
	Samp	ling details		Sample type			Results	required	by: 51/	ANDARD				
				0.10	Asbestos	Asbestos								KEED
	Location	Depth	Date	Soil Samples	presence/absence	%w/w								SAMDLE2
	S1	0-0.1	12.08.2021	DSP				-					<u> </u>	YES
	S2	0-0.1	12.08.2021	DSP		~			1					YES
	S3	0-0.1	12.08.2021	DSP		~								YES
	S4	0-0.1	12.08.2021	DSP		~								YES
	S5	0-0.1	12.08.2021	DSP		~								YES
	S6	0-0.1	12.08.2021	DSP		✓								YES
	S7	0-0.1	12.08.2021	DSP		~			1					YES
	S8	0-0.1	12.08.2021	DSP		\checkmark		Part .	1 1 .					YES
	S9	0-0.1	12.08.2021	DSP		\checkmark		00	TOPA	JG ZUZI	\square			YES
2	S10	0-0.1	12.08.2021	DSP		✓				1				YES
	S11	0-0.1	12.08.2021	DSP		✓								YES
	S12	0-0.1	12.08.2021	DSP		×			51:				L	YES
3	S13	0-0.1	12.08.2021	DSP		×				V				YES
-	S14	0-0.1	12.08.2021	DSP		×								YES
	S15	0-0.1	12.08.2021	DSP		×					<u></u>			YES
	S16	0-0.1	12.08.2021	DSP		× ·								YES
	D1	-	12.08.2021	DSP		×				11/			L	YES
										V	+		L	
			Define the d						Beer	hund bu	1.		L	
			Relinquished	Dy	Data		Nama	T	Rece	eived by	han			
	Name			Signature	12.08.2021		Name		50	gnature	- /		Date	
Lanar	5880			383	12.08.2021						-V	-10/8/	21-4	Fpm-
Legen	u. Mater cample, diace l	hottle			listurbed soil sample (glass jar)	DSP	Disturbed soil sample (sm	nall plastic bag)		A	- (' (@ mole 1 4+/	1
WP	Water sample, glass i	bottle		DSG Dist	urbed soil sample (glass jar)	✓.	Test required	nan plastic bag	,		/		1/1	
GV	Glass vial			OTH Oth	er	ACAN	Air sample, canister							
0.	0.000 1101			0 0	······································									

23456789811234567

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

Attention:

- ALL INVOICES/SRA - Mark Kelly

Report
Project name
Project ID
Received Date

817275-S DSI ES8320 Aug 16, 2021

Client Sample ID			^{G01} S7_0.0-0.1	^{G01} S8_0.0-0.1	^{G01} S9_0.0-0.1	^{G01} S10_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au27910	S21-Au27911	S21-Au27912	S21-Au27913
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		-1				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 100	< 100	< 20
TRH C15-C28	50	mg/kg	< 50	< 250	< 250	54
TRH C29-C36	50	mg/kg	< 50	< 250	< 250	93
TRH C10-C36 (Total)	50	mg/kg	< 50	< 250	< 250	147
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 250	< 250	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 250	< 250	< 50
TRH >C16-C34	100	mg/kg	< 100	< 500	< 500	120
TRH >C34-C40	100	mg/kg	< 100	< 500	< 500	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 500	< 500	120
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82	85	101	85
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	1.9	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	2.2	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.4	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.2	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.1	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.8	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.8	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.4	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	1.3	< 0.5	< 0.5
Dibenz(a,h)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			G01 S7 0.0-0.1	^{G01} S8 0.0-0.1	^{G01} S9 0.0-0.1	G01 S10 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No			S21-Au27910	S21-Au27911	S21-Au27912	S21-Au27913
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
		Linit	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
Pelvovelie Aremetie Hydroserbene	LUR	Unit				
	0.5	mallea	- 0 F	1.2	: 0 E	- 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.3	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalana	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Phononthrono	0.5	mg/kg	< 0.5	< 0.5 0.6	< 0.5	< 0.5
Pyropo	0.5	mg/kg	< 0.5	0.0	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	13.2	< 0.5	< 0.5
2-Fluorobinhenyl (surr.)	1	111g/kg %	<u> </u>	134	71	75
n-Ternbenyl-d14 (surr.)	1	// %	57	133	71	78
Organochlorine Pesticides		70	01	100	,,	10
Chlordanes - Total	0.1	ma/ka	< 1	<i></i> 1	<u> </u>	<i></i> 1
	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4 4'-DDT	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
a-HCH	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
b-HCH	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
d-HCH	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Dieldrin	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan I	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan II	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan sulphate	0.05	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Endrin	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Endrin ketone	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Methoxychlor	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toxaphene	0.5	mg/kg	< 10	< 10	< 10	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 1	< 1	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	84	76	126	110
Tetrachloro-m-xylene (surr.)	1	%	85	84	70	61
Polychlorinated Biphenyls	1					
Aroclor-1016	0.5	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1221	0.1	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1232	0.5	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1242	0.5	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1248	0.5	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1254	0.5	mg/kg	< 1	< 1	< 1	< 1
Aroclor-1260	0.5	mg/kg	< 1	< 1	< 1	< 1
Total PCB*	0.5	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	84	76	126	110
l etrachloro-m-xylene (surr.)	1	%	85	84	70	61

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			Go1S7_0.0-0.1 Soil S21-Au27910 Aug 12, 2021	Go1S8_0.0-0.1 Soil S21-Au27911 Aug 12, 2021	Go1S9_0.0-0.1 Soil S21-Au27912 Aug 12, 2021	G ⁰¹ S10_0.0-0.1 Soil S21-Au27913 Aug 12, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	15	7.8	7.5	16
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	20	8.1	5.7	17
Copper	5	mg/kg	54	24	8.4	33
Lead	5	mg/kg	110	33	11	56
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	11	7.7	< 5	< 5
Zinc	5	mg/kg	190	68	32	160
% Moisture	1	%	18	20	9.0	17

Client Sample ID			S10 0.4-0.5	S11 0.0-0.1	S12 0.0-0.1	S13 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au27914	S21-Au27915	S21-Au27916	S21-Au27917
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	-	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	-	< 50	< 50	51
TRH C10-C36 (Total)	50	mg/kg	-	< 50	< 50	51
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	-	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	-	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	< 100	< 100
ВТЕХ						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	96	93	83
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	0.9	0.7
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	1.2	1.0
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	1.5	1.3
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	0.8	0.6
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5

Client Sample ID			S10_0.4-0.5	S11_0.0-0.1	S12_0.0-0.1	S13_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au27914	S21-Au27915	S21-Au27916	S21-Au27917
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
	LOR	Unit	,	,	,	
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Benzo(a h i)pervlene	0.5	ma/ka	_	< 0.5	0.6	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg		< 0.5	0.0	0.6
Chrysene	0.5	mg/kg	_	< 0.5	0.7	< 0.5
Dibenz(a h)anthracene	0.5	ma/ka	_	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	ma/ka	_	< 0.5	0.7	< 0.5
Fluorene	0.5	ma/ka	_	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	ma/ka	_	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	_	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	_	< 0.5	< 0.5	< 0.5
Pyrene	0.5	ma/ka	-	< 0.5	0.9	0.6
Total PAH*	0.5	mg/kg	-	< 0.5	4.5	1.8
2-Fluorobiphenyl (surr.)	1	%	-	88	74	71
p-Terphenyl-d14 (surr.)	1	%	-	118	101	95
Organochlorine Pesticides						
Chlordanes - Total	0.1	ma/ka	-	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	ma/ka	-	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	ma/ka	-	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	ma/ka	-	< 0.05	< 0.05	< 0.05
a-HCH	0.05	ma/ka	-	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	INT	INT	148
Tetrachloro-m-xylene (surr.)	1	%	-	121	97	108
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5

Client Sample ID			S10_0.4-0.5	S11_0.0-0.1	S12_0.0-0.1	S13_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au27914	S21-Au27915	S21-Au27916	S21-Au27917
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Total PCB*	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	-	INT	INT	148
Tetrachloro-m-xylene (surr.)	1	%	-	121	97	108
Heavy Metals						
Arsenic	2	mg/kg	5.3	17	14	19
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	28	18	27
Copper	5	mg/kg	12	15	17	35
Lead	5	mg/kg	14	49	150	110
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	0.2
Nickel	5	mg/kg	< 5	< 5	< 5	6.6
Zinc	5	mg/kg	14	93	160	180
% Moisture	1	%	-	18	14	19
% Clay	1	%	24	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	240	-	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.8	-	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	16	-	-	-

Client Sample ID			S14_0.0-0.1	S15_0.0-0.1	S16_0.0-0.1	D1_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au27918	S21-Au27919	S21-Au27920	S21-Au27921
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	87	98	141	94

Client Sample ID			S14_0.0-0.1	S15_0.0-0.1	S16_0.0-0.1	D1_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Au27918	S21-Au27919	S21-Au27920	S21-Au27921
Date Sampled			Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
	LOR	Linit	,	,	,	
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Benzo(2)pyrene TEO (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5 0.6	<u> </u>	< 0.5 0.6	<u> </u>
Benzo(a)pyrene TEQ (incertain bound) *	0.5	ma/ka	1.2	1.2	1.2	1.2
Acenaphthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pvrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	0.6	0.5
2-Fluorobiphenyl (surr.)	1	%	69	96	64	69
p-Terphenyl-d14 (surr.)	1	%	95	93	92	98
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
I oxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)^	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutuloblerondete (curr.)	0.1	тд/кд	< 0.1 INIT	< 0.1	< 0.1	< 0.1
Totrachloro m vulono (surr.)	1	70 0/	140	108	1101	110
		70	113	90	CII	113

			0.15 0.004		
		S14_0.0-0.1	\$15_0.0-0.1	S16_0.0-0.1	D1_0.0-0.1
		Soil	Soil	Soil	Soil
		S21-Au27918	S21-Au27919	S21-Au27920	S21-Au27921
		Aug 12, 2021	Aug 12, 2021	Aug 12, 2021	Aug 12, 2021
LOR	Unit				
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1	%	INT	139	INT	INT
1	%	113	98	115	113
2	mg/kg	24	29	24	26
0.4	mg/kg	< 0.4	0.6	< 0.4	< 0.4
5	mg/kg	30	22	29	39
5	mg/kg	30	58	36	21
5	mg/kg	190	140	110	220
0.1	mg/kg	0.1	< 0.1	0.2	0.2
5	mg/kg	7.9	12	< 5	5.9
5	mg/kg	160	150	80	84
1	%	6.9	10	8.3	7.6
	LOR 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 2 0.4 5 5 0.1 5 5 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOR Unit 0.5 mg/kg 0.1 mg/kg 0.5 mg/kg 1 % 2 mg/kg 5 mg/kg	S14_0.0-0.1 SoilS0ilS21-Au27918 Aug 12, 2021LORUnit0.5mg/kg< 0.5	S14_0.0-0.1 Soil S15_0.0-0.1 Soil S21-Au27918 S21-Au27919 Aug 12, 2021 Aug 12, 2021 LOR Unit Aug 12, 2021 0.5 mg/kg < 0.5	S14_0.0-0.1 Soil S15_0.0-0.1 Soil S15_0.0-0.1 Soil S16_0.0-0.1 Soil LOR Unit S21-Au27918 S21-Au27919 Aug 12, 2021 Aug 12, 2021 Aug 12, 2021 LOR Unit Aug 12, 2021 Aug 12, 2021 Aug 12, 2021 Aug 12, 2021 0.5 mg/kg < 0.5

Client Sample ID			TRIP SPIKE TS1	TRIP BLANK TB1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-Au27922	S21-Au27924
Date Sampled			Aug 12, 2021	Aug 12, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	-	< 20
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20
втех				
Benzene	0.1	mg/kg	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	85
TRH C6-C10	1	%	99	-
Total Recoverable Hydrocarbons				
Naphthalene	1	%	100	-
TRH C6-C9	1	%	99	-

Client Sample ID			TRIP SPIKE TS1	TRIP BLANK TB1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-Au27922	S21-Au27924
Date Sampled			Aug 12, 2021	Aug 12, 2021
Test/Reference	LOR	Unit		
BTEX				
Benzene	1	%	98	-
Ethylbenzene	1	%	98	-
m&p-Xylenes	1	%	98	-
o-Xylene	1	%	98	-
Toluene	1	%	100	-
Xylenes - Total	1	%	98	_
4-Bromofluorobenzene (surr.)	1	%	142	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Aug 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 18, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 24, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Aug 18, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Aug 18, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Aug 18, 2021	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Aug 16, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			
% Clay	Brisbane	Aug 19, 2021	14 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Aug 18, 2021	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Aug 19, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Aug 19, 2021	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			

	eurofi	ns			Australia												New Zealand			
~~ •	Curon	En	Environment Testing		Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 125-	S U 175 1 D L 4 P	ydney Init F3, E 6 Mars I ane Cov hone : +	Building Road ve West ⊧61 2 99	F NSW 2 900 840	8 1/ 066 P 0 N	risban (21 Sm lurarrie hone : ATA #	e allwood QLD 4 +61 7 39 1261 Sit	Place 172 902 4600 ie # 207	۲ 2 ۱ 0 94	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290		
ABN: 50	005 085 521 web:	www.eurofins.com	.au email: EnviroSa	les@eurofins.com		N	IATA # ′	1261 Sit	te # 182	17						NATA # 1261 Site # 25079				
Con Add	npany Name: Iress:	Aargus Pty 6 Carter St Lidcombe NSW 2141	r Ltd reet				O R(Pl Fa	rder N eport hone: ax:	No.: #:	8 ()	31727)2 95)2 95	75 68 615 66 617	59 79			Received: Due: Priority: Contact Name:	Aug 16, 2021 3:04 PM Aug 23, 2021 5 Day - ALL INVOICES/SRA - Mark Kelly			
Pro Pro	ject Name: ject ID:	DSI ES8320														Eurofins Analytica	I Services Manager : Asim Khan			
		s	Sample Detail			% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH						
Melbo	ourne Laborato	ory - NATA Sit	te # 1254								Х				_					
Sydn	ey Laboratory	- NATA Site #	18217				X	Х	X	Х	Х	X	X	Х	_					
Brisb	ane Laborator	y - NATA Site	# 20794			Х									_					
Perth	Laboratory - N	NATA Site # 2	3736												_					
Mayfi	eld Laboratory	/ - NATA Site	# 25079												_					
Exter	nal Laboratory														-					
NO	Sample ID	Sample Date	e Sampling Time	Matrix																
1	S7_0.0-0.1	Aug 12, 2021		Soil	S21-Au27910				Х	Х		X								
2	S8_0.0-0.1	Aug 12, 2021		Soil	S21-Au27911				Х	Х		Х								
3	S9_0.0-0.1	Aug 12, 2021		Soil	S21-Au27912				х	х		х								
4	S10_0.0-0.1	Aug 12, 2021		Soil	S21-Au27913				х	х		х								
5	S10_0.4-0.5	Aug 12, 2021		Soil	S21-Au27914	Х	Х	х			Х									
6	S11_0.0-0.1	Aug 12, 2021		Soil	S21-Au27915				Х	Х		Х								
7	S12_0.0-0.1	Aug 12, 2021		Soil	S21-Au27916				Х	Х		Х								
8	S13_0.0-0.1	Aug 12, 2021		Soil	S21-Au27917				Х	Х		Х								
9	S14_0.0-0.1	Aug 12, 2021		Soil	S21-Au27918				Х	Х		X								

	eurofi	nc				Australia												New Zealand	
ABN:	Environment Testing BN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com		ng fins.com	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1250	175 1 0 L 4 F	Sydney Jnit F3, 6 Mars ane Co Phone : NATA #	Building Road ve Wesi +61 2 9 1261 Si) F t NSW 2 900 840 te # 182	E 1 2066 P 0 N 217	Brisbar /21 Sm /urarrie Phone : IATA #	e allwood QLD 4 +61 7 3 1261 Si	Place 172 902 460 te # 207	F 4 V 0 F '94 N	Perth 16-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290		
Co Ao	mpany Name: dress:	Aargus F 6 Carter Lidcomb NSW 21	Pty Lt Stree 9e 41	td et				O R P F	erder I eport hone: ax:	No.: #:	;	8172 ⁻ 02 95 02 95	75 68 61 66 61	59 79			Received: Due: Priority: Contact Name:	Aug 16, 2021 3:04 Aug 23, 2021 5 Day - ALL INVOICES/S	PM RA - Mark Kelly
Pr Pr	oject Name: oject ID:	DSI ES8320															Eurofins Analytica	I Services Manager :	: Asim Khan
			Sar	mple Detail			% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Mell	ourne Laborate	ory - NATA	Site #	# 1254								х							
Syd	ney Laboratory	- NATA Site	e # 18	8217				х	Х	х	х	Х	х	х	Х				
Bris	bane Laborator	y - NATA Si	ite # 2	20794			Х												
Pert	h Laboratory - N	NATA Site #	2373	36				1								_			
May	field Laboratory	- NATA Sit	te # 2	25079							<u> </u>		-			4			
Exte	rnal Laboratory	1		i				1								4			
10	S15_0.0-0.1	Aug 12, 20	21	Soil		S21-Au27919				X	X		X			4			
11	S16_0.0-0.1	Aug 12, 20	21	Soil		S21-Au27920				X	X		X			4			
12	D1_0.0-0.1	Aug 12, 20	21	Soil		S21-Au27921				X	X		X			4			
13	TRIP SPIKE TS1	Aug 12, 20	21	Soil		S21-Au27922									х				
14	TRIP BLANK TB1	Aug 12, 20	21	Soil		S21-Au27924								x					
15	RINSATE	Aug 12, 20	21	Water		S21-Au27925			Х										
Test	Counts						1	1	2	11	11	1	11	1	1				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					-	
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1	1	1	r	
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank					-	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.5		0.5	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.5		0.5	Pass	
Aroclor-1242	mg/kg	< 0.5		0.5	Pass	
Aroclor-1248	mg/kg	< 0.5		0.5	Pass	
Aroclor-1254	mg/kg	< 0.5		0.5	Pass	
Aroclor-1260	mg/kg	< 0.5		0.5	Pass	
Total PCB*	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank						
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10		10	Pass	
LCS - % Recovery		1	1		r	
Total Recoverable Hydrocarbons						
TRH C6-C9	%	83		70-130	Pass	
TRH C10-C14	%	97		70-130	Pass	
Naphthalene	%	94		70-130	Pass	
TRH C6-C10	%	78		70-130	Pass	
TRH >C10-C16	%	96		70-130	Pass	
LCS - % Recovery					-	
втех						
Benzene	%	89		70-130	Pass	
Toluene	%	74		70-130	Pass	
Ethylbenzene	%	78		70-130	Pass	
m&p-Xylenes	%	78		70-130	Pass	
o-Xylene	%	76		70-130	Pass	
Xylenes - Total*	%	77		70-130	Pass	
LCS - % Recovery			I I	T		
Polycyclic Aromatic Hydrocarbons					_	
Acenaphthene	%	90		70-130	Pass	
Acenaphthylene	%	85		70-130	Pass	
	%	85		/0-130	Pass	
Benz(a)anthracene	%	83		/0-130	Pass	
Benzo(a)pyrene	<u>%</u>	91		70-130	Pass	
	<u>%</u>	80		70-130	Pass	
Benzo(g.n.i)peryiene	%	95		/0-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene			%	101		70-130	Pass	
Chrysene			%	92		70-130	Pass	
Dibenz(a.h)anthracene			%	90		70-130	Pass	
Fluoranthene			%	85		70-130	Pass	
Fluorene			%	90		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	92		70-130	Pass	
Naphthalene			%	88		70-130	Pass	
Phenanthrene			%	81		70-130	Pass	
Pyrene			%	86		70-130	Pass	
LCS - % Recovery				1	I	I		
Organochlorine Pesticides								
Chlordanes - Total			%	99		70-130	Pass	
4.4'-DDD			%	94		70-130	Pass	
4.4'-DDE			%	111		70-130	Pass	
4.4'-DDT			%	84		70-130	Pass	
a-HCH			%	97		70-130	Pass	
Aldrin			%	115		70-130	Pass	
b-HCH			%	109		70-130	Pass	
d-HCH			%	97		70-130	Pass	
Dieldrin			%	103		70-130	Pass	
Endosulfan I			%	105		70-130	Pass	
Endosulfan II			%	100		70-130	Pass	
Endosulfan sulphate			%	97		70-130	Pass	
Endrin			%	117		70-130	Pass	
Endrin aldehyde			%	86		70-130	Pass	
Endrin ketone			%	92		70-130	Pass	
g-HCH (Lindane)			%	94		70-130	Pass	
Heptachlor			%	104		70-130	Pass	
Heptachlor epoxide		%	102		70-130	Pass		
Hexachlorobenzene		%	103		70-130	Pass		
Methoxychlor			%	111		70-130	Pass	
LCS - % Recovery				1				
Polychlorinated Biphenyls			0/			70.400		
Aroclor-1016			%	91		70-130	Pass	
Arocior-1260			%	92		70-130	Pass	
LCS - % Recovery				1		1		
			0/	102		80.100	Deee	
Alsenic			% 0/	102		80-120	Pass	
Chromium			70 0/	110		80.120	Pass	
Copper			70 0/	120		80.120	Pass	
		/0 0/_	100		80-120	Pass		
Mercury			103		80-120	Dass		
Nickel		 %	110		80-120	Pass		
Zinc		%	117		80-120	Pass		
			70	1 117		00 120	1 433	
% Clay			%	117		70-130	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	91		70-130	Pass	
Test	Lab Sample ID	QA	Units	Result 1		Acceptance	Pass	Qualifying
Spike - % Recovery		Source				Linnits	Linits	Coue
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	S21-Au33244	NCP	%	80		70-130	Pass	
TBH C6-C10	S21-Au33244	NCP	%	79		70-130	Pass	
Spike - % Recovery			,,,					

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthene	S21-Au32521	NCP	%	93		70-130	Pass	
Acenaphthylene	S21-Au27007	NCP	%	78		70-130	Pass	
Anthracene	S21-Au27007	NCP	%	75		70-130	Pass	
Benz(a)anthracene	S21-Au27007	NCP	%	74		70-130	Pass	
Benzo(a)pyrene	S21-Au27007	NCP	%	76		70-130	Pass	
Benzo(b&j)fluoranthene	S21-Au27007	NCP	%	74		70-130	Pass	
Benzo(g.h.i)perylene	S21-Au35038	NCP	%	86		70-130	Pass	
Benzo(k)fluoranthene	S21-Au32521	NCP	%	125		70-130	Pass	
Chrysene	S21-Au32521	NCP	%	111		70-130	Pass	
Dibenz(a.h)anthracene	S21-Au35038	NCP	%	86		70-130	Pass	
Fluoranthene	S21-Au27007	NCP	%	75		70-130	Pass	
Fluorene	S21-Au32521	NCP	%	86		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Au27007	NCP	%	71		70-130	Pass	
Naphthalene	S21-Au32521	NCP	%	95		70-130	Pass	
Phenanthrene	S21-Au27007	NCP	%	77		70-130	Pass	
Pyrene	S21-Au27007	NCP	%	75		70-130	Pass	
Spike - % Recovery				1	1 1	1		
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S21-Au27007	NCP	%	88		70-130	Pass	
4.4'-DDD	S21-Au27007	NCP	%	71		70-130	Pass	
4.4'-DDE	S21-Au27007	NCP	%	92		70-130	Pass	
4.4'-DDT	S21-Au26397	NCP	%	87		70-130	Pass	
a-HCH	S21-Au27007	NCP	%	79		70-130	Pass	
Aldrin	S21-Au27007	NCP	%	92		70-130	Pass	
b-HCH	S21-Au27007	NCP	%	90		70-130	Pass	
d-HCH	S21-Au27007	NCP	%	84		70-130	Pass	
Dieldrin	S21-Au27007	NCP	%	82		70-130	Pass	
Endosulfan I	S21-Au27007	NCP	%	86		70-130	Pass	
Endosulfan II	S21-Au27007	NCP	%	78		70-130	Pass	
Endosulfan sulphate	S21-Au27007	NCP	%	77		70-130	Pass	
Endrin	S21-Au27007	NCP	%	85		70-130	Pass	
Endrin aldehyde	S21-Au26397	NCP	%	84		70-130	Pass	
Endrin ketone	S21-Au27007	NCP	%	83		70-130	Pass	
g-HCH (Lindane)	S21-Au27007	NCP	%	80		70-130	Pass	
Heptachlor	S21-Au27007	NCP	%	90		70-130	Pass	
Heptachlor epoxide	S21-Au27007	NCP	%	89		70-130	Pass	
Hexachlorobenzene	S21-Au27007	NCP	%	88		70-130	Pass	
Methoxychlor	S21-Au27007	NCP	%	75		70-130	Pass	
Spike - % Recovery				1		1		
Polychlorinated Biphenyls				Result 1			_	
Aroclor-1016	S21-Au27007	NCP	%	78		70-130	Pass	
Aroclor-1260	S21-Au27007	NCP	%	81		70-130	Pass	
Spike - % Recovery								
Heavy Metals	001100000		0 /	Result 1			_	
	S21-Au27369	NCP	%	102		/5-125	Pass	
	S21-Au28977	NCP	%	108		/5-125	Pass	
Spiké - % Recovery				D. 11				
	004 4: 07046	0.5	01	Kesult 1		75 405	D -	
Arsenic	521-Au27916		%	102	<u> </u>	/5-125	Pass	
Cadmium	S21-Au27916		%	99		/5-125	Pass	
Corromium	521-Au27916		%	113	<u> </u>	/5-125	Pass	
Copper	S21-Au27916		%	101	<u> </u>	/5-125	Pass	
Mercury	S21-Au27916	CP	%	100		75-125	Pass	L

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel	S21-Au27916	СР	%	100			75-125	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	S21-Au27919	CP	%	81			70-130	Pass	
Naphthalene	S21-Au27919	CP	%	76			70-130	Pass	
TRH >C10-C16	S21-Au27919	CP	%	81			70-130	Pass	
Spike - % Recovery									
ВТЕХ				Result 1					
Benzene	S21-Au27919	CP	%	79			70-130	Pass	
Toluene	S21-Au27919	CP	%	78			70-130	Pass	
Ethylbenzene	S21-Au27919	CP	%	82			70-130	Pass	
m&p-Xylenes	S21-Au27919	CP	%	81			70-130	Pass	
o-Xylene	S21-Au27919	CP	%	80			70-130	Pass	
Xylenes - Total*	S21-Au27919	CP	%	81			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Au28987	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH C15-C28	S21-Au28987	NCP	mg/kg	690	300	80	30%	Fail	Q02
TRH C29-C36	S21-Au28987	NCP	mg/kg	< 250	< 250	<1	30%	Pass	
TRH >C10-C16	S21-Au28987	NCP	mg/kg	< 250	< 250	<1	30%	Pass	
TRH >C16-C34	S21-Au28987	NCP	mg/kg	780	< 500	<1	30%	Pass	
TRH >C34-C40	S21-Au28987	NCP	mg/kg	< 500	< 500	<1	30%	Pass	
Duplicate				1				r	
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Au32519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Au32519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Au32519	NCP	mg/kg	< 0.5	< 1	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Au32520	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Au32519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Deput 1	Deput 2				
Chlordanos Total	S21 Au25027		ma/ka				20%	Page	
	S21-Au35037		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4-DDE	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	~1	30%	Dass	
4.4'-DDT	S21-Au35037	NCP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
9-HCH	S21-Au35037	NCP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Au35037	NCP	ma/ka	< 0.00	< 0.00	<1	30%	Pass	
b-HCH	S21-Au35037	NCP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Au35037	NCP	mg/ka	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Au35037	NCP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
L			3.1.3						

Duplicate				-					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endrin aldehyde	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Au35037	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S21-Au35037	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S21-Au35037	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Au27914	СР	uS/cm	240	250	2.7	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Au32531	NCP	pH Units	11	10	<1	30%	Pass	
Duplicate					1		Γ	1	
Heavy Metals		1	1	Result 1	Result 2	RPD			
Arsenic	S21-Au27915	CP	mg/kg	17	13	29	30%	Pass	
Cadmium	S21-Au27915	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Au27915	CP	mg/kg	28	19	37	30%	Fail	Q15
Copper	S21-Au27915	CP	mg/kg	15	21	32	30%	Fail	Q15
Lead	S21-Au27915	CP	mg/kg	49	74	40	30%	Fail	Q15
Mercury	S21-Au27915	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Au27915	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S21-Au27915	CP	mg/kg	93	120	23	30%	Pass	
Duplicate				1	1		[1	
		1	1	Result 1	Result 2	RPD			
% Moisture	S21-Au27917	CP	%	19	19	2.0	30%	Pass	
Duplicate								1	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH C6-C9	S21-Au27918	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Au27918	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Au27918	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate							[1	
BIEX	004 1 0555			Result 1	Result 2	RPD			
Benzene	S21-Au27918	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S21-Au27918	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Au27918	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Au27918	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
0-Xylene	S21-Au27918	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xvienes - Total*	S21-Au27918	I CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	i

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q02	The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
Charl Du Preez	Senior Analyst-Inorganic (NSW)
Emily Rosenberg	Senior Analyst-Metal (VIC)
John Nguyen	Senior Analyst-Metal (NSW)
Jonathon Angell	Senior Analyst-Inorganic (QLD)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Aargus Pty Ltd 6 Carter Street Lidcombe NSW 2141

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

- ALL INVOICES/SRA - Mark Kelly

Report
Project name
Project ID
Received Date

817275-W DSI ES8320 Aug 16, 2021

Client Sample ID Sample Matrix				RINSATE Water
Eurofins Sample No.				S21-Au27925
Date Sampled				Aug 12, 2021
Test/Reference		LOR	Unit	
Heavy Metals				
Arsenic	(0.001	mg/L	< 0.001
Cadmium	0	.0002	mg/L	< 0.0002
Chromium	(0.001	mg/L	< 0.001
Copper	(0.001	mg/L	< 0.001
Lead	(0.001	mg/L	< 0.001
Mercury	0	.0001	mg/L	< 0.0001
Nickel	(0.001	mg/L	< 0.001
Zinc	(0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8	Sydney	Aug 16, 2021	180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS
| | eurofi | ns | Australia | | | | | | | | | | | | New Zealand | | | |
|------------|--------------------------|---|----------------------|-------------------|---|-------------------------------|--|--|-------------------------|-------------------------|---|---|------------------------------------|----------------------------|--|---|---|---|
| ~~ | Curon | En | vironment | Testing | Melbourne
6 Monterey Road
Dandenong South VIC 3
Phone : +61 3 8564 5000
NATA # 1261 Site # 1254 | S
U
175 1
) L
1 P | ydney
Init F3, E
6 Mars I
ane Cov
hone : + | 3uilding
Road
/e West
+61 2 9 | F
t NSW 2
900 840 | 8
1/
066 P
0 N | /21 Sma
/21 Sma
lurarrie
hone : -
ATA # | e
allwood
QLD 4
+61 7 39
1261 Sit | Place
172
902 460
e # 207 | F
4
V
0 F
94 N | Perth
46-48 Banksia Road
Nelshpool WA 6106
Phone : +61 8 9251 9600
NATA # 1261 Site # 23736 | Newcastle
4/52 Industrial Drive
Mayfield East NSW 2304
PO Box 60 Wickham 2293
Phone : +61 2 4968 8448 | Auckland
35 O'Rorke Road
Penrose, Auckland 1061
Phone : +64 9 526 45 51
IANZ # 1327 | Christchurch
43 Detroit Drive
Rolleston, Christchurch 7675
Phone : 0800 856 450
IANZ # 1290 |
| ABN: 5 | 0 005 085 521 web | : www.eurofins.com | n.au email: EnviroSa | ales@eurofins.com | | N | IATA # 1 | 261 Sit | .e # 182 | 17 | | | | | | NATA # 1261 Site # 25079 | | |
| Co
Ad | mpany Name:
dress: | Aargus Pty
6 Carter St
Lidcombe
NSW 2141 | / Ltd
treet | | | | O
Re
Pl
Fa | rder N
eport
hone:
ax: | ۱o.:
#: | 8
0 | 31727
)2 95(
)2 95(| 75
68 615
66 617 | 59
79 | | | Received:
Due:
Priority:
Contact Name: | Aug 16, 2021 3:04
Aug 23, 2021
5 Day
- ALL INVOICES/S | PM
RA - Mark Kelly |
| Pro
Pro | oject Name:
oject ID: | DSI
ES8320 | | | | | | | | | | | | | | Eurofins Analytica | Il Services Manager : | Asim Khan |
| | | 5 | Sample Detail | | | % Clay | pH (1:5 Aqueous extract at 25°C as rec.) | Metals M8 | Suite B13: OCP/PCB | Moisture Set | Cation Exchange Capacity | Eurofins Suite B7 | BTEXN and Volatile TRH | BTEXN and Volatile TRH | | | | |
| Melb | ourne Laborat | ory - NATA Si | te # 1254 | | | | | <u> </u> | <u> </u> | | X | | | | | | | |
| Sydr | ney Laboratory | - NATA Site # | 18217 | | | | X | X | X | Х | X | X | Х | Х | _ | | | |
| Brist | bane Laborator | ry - NATA Site | # 20794 | | | Х | | <u> </u> | | | | | | | _ | | | |
| Perti | h Laboratory - | NATA Site # 2 | 3736 | | | | | <u> </u> | | | | | | | _ | | | |
| Mayf | ield Laborator | y - NATA Site | # 25079 | | | | | ── | | | | | | | _ | | | |
| Exte | Sample ID | y
Sample Dat | a Sampling | Matrix | | | | <u> </u> | + | | | | | | - | | | |
| 110 | Cample ID | | Time | Matrix | | | | | \square | | | | | | | | | |
| 1 | S7_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27910 | | <u> </u> | | X | X | | X | | | | | | |
| 2 | S8_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27911 | | | | X | Х | | X | | | 4 | | | |
| 3 | S9_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27912 | | | | X | X | <u> </u> | X | | | 4 | | | |
| 4 | S10_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27913 | | | | X | X | <u> </u> | X | | | 4 | | | |
| 5 | S10_0.4-0.5 | Aug 12, 2021 | | Soil | S21-Au27914 | Х | X | X | — | | X | | | | 4 | | | |
| 6 | S11_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27915 | | | | X | X | <u> </u> | X | | | 4 | | | |
| 7 | S12_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27916 | | | | X | X | <u> </u> | X | | | 4 | | | |
| 8 | S13_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27917 | | | | X | Х | - | X | | | 4 | | | |
| 9 | S14_0.0-0.1 | Aug 12, 2021 | | Soil | S21-Au27918 | | | \square | X | Х | | Х | | | | | | |

	eurofi	nc			Australia												New Zealand	
ABN: 5	0 005 085 521 web	www.eurofins.	Envi com.au	ronment Testing email: EnviroSales@eurofins.o	Melbourne 6 Monterey Road Dandenong South VIC Phone : +61 3 8564 50 NATA # 1261 Site # 12	3175 000 254	Sydney Unit F3, 16 Mars Lane Cc Phone : NATA #	Building Road ove Wes +61 2 9 1261 Si	; F t NSW 2 900 840 ite # 182	1 2066 F 0 N 217	Arisbai /21 Sn /lurarrio Phone : NATA #	ne nallwood e QLD 4 +61 7 3 1261 Si	Place 172 902 460 te # 207	10 10 194 1	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Co Ad	mpany Name: dress:	Aargus 6 Carter Lidcomb NSW 21	Pty Lt r Stree be I 41	d et			C R P F	Order I Report Phone: Tax:	No.: : #: :	;	8172 02 95 02 95	75 68 61 66 61	59 79			Received: Due: Priority: Contact Name:	Aug 16, 2021 3:04 Aug 23, 2021 5 Day - ALL INVOICES/S	PM SRA - Mark Kelly
Pro Pro	oject Name: oject ID:	DSI ES8320)													Eurofins Analytica	I Services Manager	: Asim Khan
			Sar	nple Detail		% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Mell	ourne Laborate	ory - NATA	Site #	# 1254							Х							
Syd	ney Laboratory	- NATA Sit	e # 18	3217			X	Х	X	X	Х	X	Х	Х	_			
Bris	bane Laborator	y - NATA S	ite # 2	20794		X				_					_			
Pert	h Laboratory - I	NATA Site #	¥ 237:	36						<u> </u>					_			
Мау	field Laboratory	/ - NATA Si	te # 2	5079		_				<u> </u>					_			
Exte	rnal Laboratory	/				_		_		<u> </u>					_			
10	S15_0.0-0.1	Aug 12, 20)21	Soil	S21-Au27919		_		<u> </u>	<u> </u>		X			4			
11	S16_0.0-0.1	Aug 12, 20)21	Soil	S21-Au27920	_	_		<u> </u>	<u> </u>		X			_			
12 13	D1_0.0-0.1 TRIP SPIKE	Aug 12, 20 Aug 12, 20)21)21	Soil Soil	S21-Au27921 S21-Au27922				X	X		<u> </u>		x	-			
14	TRIP BLANK TB1	Aug 12, 20	021	Soil	S21-Au27924								x					
15	RINSATE	Aug 12, 20)21	Water	S21-Au27925			Х	\perp	\perp								
Test	Counts					1	1	2	11	11	1	11	1	1				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.001			0.001	Pass	
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Chromium			mg/L	< 0.001			0.001	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	102			80-120	Pass	
Cadmium			%	97			80-120	Pass	
Chromium			%	95			80-120	Pass	
Copper			%	88			80-120	Pass	
Lead			%	88			80-120	Pass	
Mercury			%	97			80-120	Pass	
Nickel			%	91			80-120	Pass	
Zinc			%	92			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-Au29751	NCP	%	94			75-125	Pass	
Cadmium	S21-Au27495	NCP	%	105			75-125	Pass	
Chromium	S21-Au27495	NCP	%	87			75-125	Pass	
Copper	S21-Au29751	NCP	%	92			75-125	Pass	
Lead	S21-Au29751	NCP	%	91			75-125	Pass	
Mercury	S21-Au27495	NCP	%	89			75-125	Pass	
Nickel	S21-Au29751	NCP	%	93			75-125	Pass	
Zinc	S21-Au27495	NCP	%	80			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				T	1		1		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Au27900	NCP	mg/L	0.001	0.001	11	30%	Pass	
Cadmium	S21-Au27900	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Au27900	NCP	mg/L	0.025	0.002	170	30%	Fail	Q15
Copper	S21-Au27900	NCP	mg/L	0.001	< 0.001	50	30%	Fail	Q15
Lead	S21-Au27900	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-Au27900	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Au27900	NCP	mg/L	0.002	< 0.001	120	30%	Fail	Q15
Zinc	S21-Au27900	NCP	mg/L	0.007	< 0.005	45	30%	Fail	Q15

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan John Nguyen Analytical Services Manager Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Unit F3, Building F Brisbane 16 Mars Road NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 1/21 Smallwood Place NATA # 1261 Site # 20794 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	Aargus Pty Ltd
Contact name:	- ALL INVOICES/SRA - Mark Kelly
Project name:	DSI
Project ID:	ES8320
Turnaround time:	5 Day
Date/Time received	Aug 16, 2021 3:04 PM
Eurofins reference	817275

Sample Information

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Asim Khan on phone : or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to - ALL INVOICES/SRA - Mark Kelly - mark.kelly@aargus.net.

Global Leader - Results you can trust

🥵 eurofi	😫 eurofins 🗆															New Zealand	
ABN: 50 005 085 521 web	Env : www.eurofins.com.	vironment au email: EnviroSa	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 F	Sydney Jnit F3, 6 Mars ane Co Phone : - NATA #	Building Road ve West +61 2 99 1261 Si	F t NSW 2 900 840 te # 182	8 1/ 2066 P 10 N 217	Visban /21 Sm /urarrie Phone : IATA #	e allwood QLD 4 +61 7 39 1261 Si	Place 172 902 4600 e # 2079	F 4 V 0 F 94 N	Perth 16-48 Banksia Road Velshpool WA 6106 Phone : +61 8 9251 9600 VATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Aargus Pty 6 Carter Sti Lidcombe NSW 2141	Ltd reet				O R P F	rder I eport hone: ax:	No.: #:	{ ((81727 02 95 02 95	75 68 61 66 61	59 79			Received: Due: Priority: Contact Name:	Aug 16, 2021 3:04 Aug 23, 2021 5 Day - ALL INVOICES/S	PM SRA - Mark Kelly
Project Name: Project ID:	DSI ES8320														Eurofins Analytica	Il Services Manager	: Asim Khan
	s	ample Detail			% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Melbourne Laborate	ory - NATA Sit	e # 1254								Х							
Sydney Laboratory	- NATA Site #	18217				X	Х	X	X	X	X	Х	Х	4			
Brisbane Laborator	ry - NATA Site	# 20794			X				<u> </u>					4			
Perth Laboratory - I	NATA Site # 23	5736							──					4			
Mayfield Laboratory	y - NATA Site #	\$ 25079							<u> </u>					4			
External Laboratory No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										-			
1 S7_0.0-0.1	Aug 12, 2021		Soil	S21-Au27910				х	X		X						
2 S8_0.0-0.1	Aug 12, 2021		Soil	S21-Au27911				Х	X		X			1			
3 S9_0.0-0.1	Aug 12, 2021		Soil	S21-Au27912				Х	X		Х			1			
4 S10_0.0-0.1	Aug 12, 2021		Soil	S21-Au27913				Х	Х		Х						
5 S10_0.4-0.5	Aug 12, 2021		Soil	S21-Au27914	Х	Х	Х			Х							
6 S11_0.0-0.1	Aug 12, 2021		Soil	S21-Au27915				Х	Х		Х						
7 S12_0.0-0.1	Aug 12, 2021		Soil	S21-Au27916				Х	Х		Х						
8 S13_0.0-0.1	Aug 12, 2021		Soil	S21-Au27917				х	X		Х						
9 S14_0.0-0.1	Aug 12, 2021		Soil	S21-Au27918				Х	х		Х						

	eurofi	ns		Australia											New Zealand			
ABN: 5	50 005 085 521 web	www.eurofins.com.	vironment T	esting s@eurofins.com	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	175 - 0 I 4 I	Sydney Jnit F3, 16 Mars Lane Co Phone : NATA #	Building Road ve Wes +61 2 9 1261 Si	g F t NSW 2 900 840 ite # 182	1 1 2066 P 10 N 217	risban /21 Sm lurarrie hone : IATA #	e allwood QLD 4 +61 7 39 1261 Si	Place 172 902 4600 te # 2079	P 4 V 0 P 94 N	Perth 16-48 Banksia Road Velshpool WA 6106 Phone : +61 8 9251 9600 JATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
Co Ad	ompany Name: Idress:	Aargus Pty 6 Carter St Lidcombe NSW 2141	Ltd reet				O R P	order l eport hone ax:	No.: : #: :	8 () ()	81727 02 95 02 95	75 68 61 66 61	59 79			Received: Due: Priority: Contact Name:	Aug 16, 2021 3:04 Aug 23, 2021 5 Day - ALL INVOICES/S	PM SRA - Mark Kelly
Pro Pro	oject Name: oject ID:	DSI ES8320														Eurofins Analytica	I Services Manager	: Asim Khan
		s	ample Detail			% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Suite B13: OCP/PCB	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Mell	bourne Laborate	ory - NATA Sit	e # 1254								Х							
Syd	ney Laboratory	- NATA Site #	18217				X	х	X	х	Х	X	х	Х				
Bris	bane Laborator	y - NATA Site	# 20794			Х									_			
Pert	h Laboratory - I	NATA Site # 23	3736												4			
May	field Laboratory	/ - NATA Site #	# 25079												4			
Exte	ernal Laboratory	1		0 - 'l	001 0.07010										-			
10	S15_0.0-0.1	Aug 12, 2021		5011 Soil	S21-Au2/919			+			+				-			
12		Aug 12, 2021		Soil	S21-Au27920										-			
13	TRIP SPIKE	Aug 12, 2021 Aug 12, 2021	5	Soil	S21-Au27921									x	-			
14	TRIP BLANK TB1	Aug 12, 2021	5	Soil	S21-Au27924								x					
15	RINSATE	Aug 12, 2021	<u> </u>	Water	S21-Au27925			Х							4			
Test	t Counts					1	1	2	11	11	1	11	1	1				

AARGUS PTY L	5									IDOFATOR	y Test Req	uest / C	hain of Cus	tody Record	
6 Carter Street Lidcombe, NSW 2141	DRUMMO	P O Box 398 YNE NSW 1470	Tel: 1300 13 Fax: 1300 13	7 038 96 038	៣៣	mail reports: cynthia@a mail invoices: anika@aa	argus.net; g argus.net; cy	okul@aargus.n nthia@aargus.r	et; mark.kelly net; gokul@a	@aargus.ne argus.net; m	it;sara@aargus.ne iark.kelly@aargus	t .net; sara@a	aargus.net		
TO: MGT EUROFINS							Sampling D	ate:		12.08.2021		Job No:	ES8320		-
16 MARS ROAD LANE COVE WEST N	ISW 2066						Sampled By	7		SBS	_	Project:	DSI		
PH: 028215 6222 ATTN:			FAX:	02 9420 29	977		Project Mar	lager:		MK		Location:	Lakemba		
Sampli	ng details		Samp	ole type					-	Results	required by	: STAN	DARD		
Location	Depth (m)	Date	Soil	Water (Filled Up)	Air	etals (As, Cd, Cr, Cu, Hg, Pb, Ni, Zn)	TPH	BTEXN	PAH	OCP	РСВ			pH, CEC &%Clay	Anal Suit
S7	0-0.1	12.08.2021	DSG		_	<	<	~	<	<	<				B7.
8S	0-0.1	12.08.2021	DSG		_	~	<	<	<	<	<				B7.1
65	0-0.1	12.08.2021	DSG			~	<	<	<	<	<				B7, I
S10	0-0.1	12.08.2021	DSG		_	<	<	<	<	<	<				B7, I
S10	0.4-0.5	12.08.2021	DSG			<								<	M
S11	0-0.1	12.08.2021	DSG		_	<	<	<	~	<	<				B7, B
\$12	0-0.1	12.08.2021	DSG			. <	<	<	~	<	~				B7, B
2.0	0-0.1	12.08.2021	DSG		-	. <		. <	<	<	<				B7, B
014	0-0.1	12.08.2021	DSG			. <	<	<	<	<	<				B7, B
0.0	0-0.1	12.08.2021	DSG			. <	<	<	<	<	<				B7, B
SIG	0-0.1	12.08.2021	DSG	-	+	<	<	<		< <					B7, B
Trip Spike TS1	'	12 08 2021	0	Vial	+	12.1	3								B/, B
Trip Blank TB1		12.08.2021		Vial				Please tes	st for TRH	F1 and	BTEX				
Rinsate R1		12.08.2021	WP	, WG, Vial	_	~									M
Relinquished by												Received I	by .		
Name			Signature			Date		Name	w			Sign	ature		Da
Saad			SBS		4	12.08.2021	Jere	my			44	PONNA.			212191
Legend: WG Water sample, glass bo WP Water sample, plastic t	ottle			USG Un DSG Dis	disturb	ed soil sample (glass j; soil sample (glass jar)	√DSP		Disturbed soil Fest required	sample (sm	all plastic bag)	Tem	-2-1C		[@] mole
GV Glass vial				OTH Of	ier		ACAN	T	Air sample, ca	Inister		گرا	1210		

APPENDIX J

SUMMARY OF RESULTS

TABLE 1	
SCHEDULE OF LABORATORY T	ESTING

Analyte /	Analyte Group	TYPE		DUPLICATE	SPLIT	MET-8	TPH &	PAH	OC	РСВ	ASBESTOS	pH, CEC, %Clay
Sample	Depth (m)		DATE				DILX					700lay
Aargus 2010												
S1	0.4	F	23.11.2010			✓			~			
S2	0.3	F	23.11.2010			~		✓				
S3	0.4	F	23.11.2010			✓	~	~				
S4	0.5	F	23.11.2010			✓	~					
S5	0.3	F	23.11.2010			✓	~					
S6	0.5	F	23.11.2010			✓			~			
Aargus 2021												
S1	0-0.1	F	12.08.2021								~	
S2	0-0.1	F	12.08.2021								~	
S3	0-0.1	F	12.08.2021								~	
S4	0-0.1	F	12.08.2021								`	
S5	0-0.1	F	12.08.2021								~	
S6	0-0.1	F	12.08.2021								~	
S7	0-0.1	F	12.08.2021			~	~	~	>	~	~	
S8	0-0.1	F	12.08.2021			~	<	<	>	>	`	
S9	0-0.1	F	12.08.2021			~	<	<	>	>	`	
S10	0-0.1	F	12.08.2021			~	<	<	•	>	~	
S10	0.4-0.5	Ν	12.08.2021			~						~
S11	0-0.1	F	12.08.2021			>	>	>	>	>	~	
S12	0-0.1	F	12.08.2021			>	>	>	>	>	>	
S13	0-0.1	F	12.08.2021			~	~	>	>	~	~	
S14	0-0.1	F	12.08.2021			~	~	>	>	~	~	
S15	0-0.1	F	12.08.2021			~	~	~	~	~	~	
S16	0-0.1	F	12.08.2021	D1	SS1	~	~	~	>	~	~	

Notes

MET-8: arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc

OC: Organochlorine Pesticides

PCB : Polychlorinated Biphenyls

PAH: Polycyclic Aromatic Hydrocarbons

TPH: Total Petroleum Hydrcarbons

BTEX: Benzene, Toluene, Ethyl Benzene, Xylene

F,T,N: Fill, Topsoil, Natural

	Analyte				HEAVY ME	TALS (mę	J/kg)		
				_					
		с	Σ	ΜΠ	~	g	R		
	Image: constraint of the second sec	0							
Sampla Lagatia	n Donth (m)	RS	AD	HR	QD	5	1ER	lČ	INC
	n Deput (m)	4	0	0	0		2	2	N
Aargus 2010		0		40	40	00	0.05	7.0	10
S1	0.4	6	<0.3	13	12	38	<0.05	7.8	43
52	0.3	0	0.4 <0.2	14	10	04 14	<0.05	15	04 26
53	0.4	9	<0.5	12	5.0 25	14 56	<0.05	1.5	20
54 85	0.3	7	0.5	0.0	10	40	0.00	4.5	00
33 S6	0.5	11	0.3	12	21	72	0.00	4.5	160
Aargus 2021	0.5		0.4	12	21	12	0.20	4.1	100
S7	0-0 1	15	< 0.4	20	54	110	0.1	11	190
S8	0-0.1	7.8	< 0.4	8.1	24	33	< 0.1	7.7	68
Sample Location Depth (m) No.4 6 40.3 13 12 38 Aargus 2010 S1 0.4 6 40.3 13 12 38 S2 0.3 6 0.4 14 16 84 S3 0.44 9 40.3 12 5.6 14 S4 0.5 6 0.5 12 2.5 56 S6 0.5 11 0.4 12 2.1 72 Aargus 2021 57 0.01 1.5 < 0.4	< 0.1	< 5	32						
S10	0-0.1	16	< 0.4	17	33	56	< 0.1	< 5	160
S10	0.4-0.5	5.3	< 0.4	12	12	14	< 0.1	< 5	14
S11	0-0.1	17	< 0.4	28	15	49	< 0.1	< 5	93
S12	0-0.1	14	< 0.4	18	17	150	0.1	< 5	160
S13	0-0.1	19	< 0.4	27	35	110	0.2	6.6	180
S14	0-0.1	24	< 0.4	30	30	190	0.1	7.9	160
S15	0-0.1	29	0.6	22	58	140	< 0.1	12	150
S16	0-0.1	24	< 0.4	29	36	110	0.2	< 5	80
DUPLICATE D1	-	26	< 0.4	39	21	220	0.2	5.9	84
SPLIT SS1	-	10	<1	13	17	80	0.2	2	41
Practical Quantita	ation Limits (POL)	2	0.4	5	5	5	0.1	5	5
NATIONAL ENVI Health Investiga HIL A ^a	RONMENT PROTECTION MEASURE (2013) ation Levels (HIL) - Table 1A (1)) 100	20	100	6000	300	40 ^e / 10 ^f	400	7400
HIL B ^b		500	150	500	30,000	1,200	120 ^e / 30 ^f	1200	60,000
HIL C °		300	90	300	17,000	600	80 ^e / 13 ^f	1200	30,000
HIL D ^d		3000	900	3600	240,000	1,500	730 ^e / 180 ^f	6000	400,000
Ecological Invo	tigation Lovala (EII.) Table 18 (5)								
Areas of ecologic	cal significance	40 ^h							
Urban residentia	Land public open space ⁱ	100 ^h							
Commercial and	industrial	160 ^h							
	Desidential with pender/secondials sail.	(hama area		100/	fm:::t a.a.d	a atabla i	ntelie (ne ne	ما م	e includes
votes a:	childcare centres, preschools and primary	schools.	wn poduce	9 <10%	iruit and ve		ntake (no por	utry), ais	o includes
b:	Residential with minimal opportunities for high rise buildings and apartments.	soil acces	s; includes	dwellings	s with fully a	nd perma	inently paved	yard spa	ce such as
C:	Public open space such as parks, playg include undeveloped public open space w more appropriate	rounds, pla /here the p	aying fields otential for	s (e.g. ov exposure	als), secon e is lower an	dary scho d where a	ools and footp a site-specific a	aths. Thi assessmo	s does not ent may be
d:	Commercial/industrial, includes premises	such as sh	ops, office	s, factorie	es and indus	trial sites			
e:	Elemental mercury: HIL does not addres	s element	al mercurv	. A site-s	pecific asse	ssment s	hould be con	sidered if	elemental
	mercury is present, or suspected to be pre-	esent,	,						
f:	Methyl mercury: assessment of methyl me associated with inorganic mercury and an quality of sampling/analysis should be cor	ercury shou aerobic mio nsidered.	uld only occ croorganisi	cur where n activity	there is evi in aquatic e	dence of nvironme	its potential so nts. In additior	urce. It m the relia	ay be bility and
g:	Lead: HIL is based on blood lead mode bioavailability has been considered. Site-s	els (IEUBK	t for HILs availability	A, B and may be ir	d C and ad	ult lead i d should b	nodel for HIL be considered	D where where ap	e 50% oral propriate.
h:	Aged values are applicable to arsenic con Schedule B5c.	tamination	present in	soil for a	t least two y	ears. For	fresh contamir	nation ref	er to
i:	Urban residential / public open space is br 1A(1) Footnote 1 and as described in Sch	roadly equi edule B7.	valent to th	e HIL-A,	HIL-B and H	IIL-C land	l use scenario	s in Table	•

TABLE A1 HEAVY METALS TEST RESULTS FOR HILs & EILs

TABLE A2

CATION EXCHANGE CAPACITY (CEC), %CLAY & pH TEST RESULTS FOR THE SOIL PROPERTIES FOR EILS

Sample Location	Analyte Depth (m)	CEC (cmol/kg)	% CLAY (%)	pH (pH units)
S10	0.4-0.5	16	24	5.8

TABLE A3 SITE DERIVED EILS

\geq	Analyte		HEAVY MET	ALS (mg/kg)	
Sample Location	Depth (m)	COPPER	LEAD	NICKEL	ZINC
Added Contaminant L S10	. <u>imit (ACL)</u> ^a 0.4-0.5	210	1100	270	400
Ambient Background S10	Concentration (ABC) 0.4-0.5	12	14	< 5	14
Calculated EIL (ABC + S10	• ACL) 0.4-0.5	222	1114	275	414
FINAL SITE EIL AFTE S10	R ROUNDING ^b 0.4-0.5	220	1100	280	410

Notes a: The ACL for Cu may be determined by pH or CEC and the lower of the determined values should be selected for EIL calculation.

b: The following rounding rules are applicable to the EILs:

<1	to nearest 0.1
1 - <10	to nearest interger
10 - <100	to nearest 5
100 - <1000	to nearest 10
>1000	to nearest 100

TABLE A4	
METAL TEST RESULTS FOR	EILs

/		Analyte		HEAVY MET	ALS (mg/kg)	
Sample Location	Depth (m)		COPPER	LEAD	NICKEL	ZINC
Aargus 2010						
S2	0.3		16	84	6	54
S3	0.4		5.6	14	1.5	26
S4	0.5		25	56	4.5	110
S6	0.5		21	72	4.1	160
Aargus 2021						
S9	0-0.1		8.4	11	< 5	32
S10	0-0.1		33	56	< 5	160
S10	0.4-0.5		12	14	< 5	14
S13	0-0.1		35	110	6.6	180
DUPLICATE D1	-		21	220	5.9	84
SPLIT SS1	-		17	80	2	41
Practical Quantitation Lim	its (PQL)		5	5	5	5
Site Derived Ecological	Investigation Levels (EIL)		220	1100	280	410

Notes a: none

TABLE B1
TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND NAPHTHALENE TEST RESULTS
FOR HSLs IN CLAY

/	Analyte	TRH	(mg/kg)			BTEX	(mg/kg)	
Sample Location	Depth (m)	F1 ª	F2 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE
	Deptir (III)							
S3 S4 S5 Aargus 2010	0.4 0.5 0.3	<20 <20 <20	<20 <20 <20	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.3 <0.3 <0.3	- -
S7	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	< 0.3	<0.5
S8	0-0.1	< 20	< 250	<0.1	<0.1	<0.1	<0.3	<0.5
S9	0-0.1	< 20	< 250	<0.1	<0.1	<0.1	<0.3	<0.5
S10	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
S11	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
S12	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
S13	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
S14	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
S15	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
S16	0-0.1	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
DUPLICATE D1	-	< 20	< 50	<0.1	<0.1	<0.1	<0.3	<0.5
SPLIT SS1	-	< 10	< 50	<0.2	<0.5	<0.5	<0.5	<1
Practical Quantitation Limits (I	PQL)	20	50	0.1	0.1	0.1	0.3	0.5
NATIONAL ENVIRONMENT F Health Screening Levels (HS	PROTECTION MEASUR SL) - Table 1A (3)	E (2013)						
Source depth - 0m to <1m		50	280	0.7	480	NI	110	5
Source depth - 1m to <2m		90	NL	1	NL	NL	310	NL
Source depth - 2m to <4m		150	NL	2	NL	NL	NL	NL
Source depth - 4m +		290	NL	3	NL	NL	NL	NL

Notes

a: To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

b: To obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction.

NL: Not Limiting

TABLE B2 TOTAL RECOVERABLE HYDROCARBONS (TRH), BTEX AND BENZO(a)PYRENE TEST RESULTS ESLs FOR FINE GRAINED SOIL TEXTURE

	Analyte	9	TRF	l (mg/kg)			BTEX	(mg/kg)		PAH (mg/kg)
		F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^b	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	BENZO(a)PYRENE
Sample Location	Depth (m)]								
Aargus 2010										
S3	0.4	<20	<20	<50	<50	<0.1	<0.1	<0.1	<0.3	
S4	0.5	<20	<20	<50	<50	<0.1	<0.1	<0.1	<0.3	-
Aargus 2021										
S9	0-0.1	< 20	< 250	< 500	< 500	<0.1	<0.1	<0.1	<0.3	< 0.5
S10	0-0.1	< 20	< 50	120	< 100	<0.1	<0.1	<0.1	<0.3	< 0.5
S13	0-0.1	< 20	< 50	< 100	< 100	<0.1	<0.1	<0.1	<0.3	0.6
DUPLICATE D1	-	< 20	< 50	< 100	< 100	<0.1	<0.1	<0.1	<0.3	< 0.5
SPLIT SS1	-	< 10	< 50	< 100	< 100	<0.2	<0.5	<0.5	<0.5	0.6
Practical Quantitation Limits (PQ	NL)	20	50	100	100	0.1	0.1	0.1	0.3	0.5
NATIONAL ENVIRONMENT PR	OTECTION MEASURE (2	2013)								
Ecological Screening Levels (I	ESL) - Table 1B (6)	1 É								
Areas of ecological significance		125 [*]	25	-	-	10	65	40	1.6	0.7
Urban residential and public ope	en space	180 [*]	120	1300	5600	65	105	125	45	0.7
Commercial and industrial		215	170 [°]	2500	6600	95	135	185	95	1.4
Notes a: To	o obtain F1 subtract the s	um of BT	EX cond	centratio	ns from the		fraction.			•

Notes

To obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction.

b: To obtain F2 subtract naphthalene from the $>C_{10}-C_{16}$ fraction.

*: ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

"-": "-" indicates that insufficient data was available to derive a value.

TABLE B3
TOTAL RECOVERABLE HYDROCARBONS (TRH) TEST RESULTS
MANAGEMENT LIMITS FOR FINE GRAINED SOIL TEXTURE

	Analyte		TRH (I	mg/kg)	
Sample Location	Depth (m)	F1 (C ₆ -C ₁₀) ^a	F2 (>C ₁₀ -C ₁₆) ^a	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)
Aarque 2010	-r · x /				
S3	0.4	<20	<20	<50	<50
55 S4	0.5	<20	<20	<50	<50
S5	0.3	<20	<20	<50	<50
Aargus 2021			-20		
S7	0-0.1	< 20	< 50	< 100	< 100
S8	0-0.1	< 20	< 250	< 500	< 500
S9	0-0.1	< 20	< 250	< 500	< 500
S10	0-0.1	< 20	< 50	120	< 100
S11	0-0.1	< 20	< 50	< 100	< 100
S12	0-0.1	< 20	< 50	< 100	< 100
S13	0-0.1	< 20	< 50	< 100	< 100
S14	0-0.1	< 20	< 50	< 100	< 100
S15	0-0.1	< 20	< 50	< 100	< 100
S16	0-0.1	< 20	< 50	< 100	< 100
DUPLICATE D1	-	< 20	< 50	< 100	< 100
SPLIT SS1	-	< 10	< 50	< 100	< 100
Practical Quantitation Limits (PQ	L)	20	50	100	100
NATIONAL ENVIRONMENT PRO Management Limits - Table 1B	OTECTION MEASURE (2 (7)	2013)			
Residential parkland and public of	open space	800	1000	3500	10,000
Commercial and industrial		800	1000	5000	10,000
Notes a: Se	parate management lim	its for BTEX a	nd naphthalene	are not availab	ole hence these

a: Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

b: Management limits are applied after consideration of relevant ESLs and HSLs.

POLYCYCLIC AROMATIC HYDROCARBONS (PAH), ORGANOCHLORINE PESTICIDES (OCP) AND POLYCHLORINATED BIPHENYLS (PCB)

TABLE C

TEST RESULTS FOR HILS

	Analyte		PAH (mg	g/kg)				Organo	chlorine Pe	esticides (r	ng/kg)			ļ
Sample Location	Depth (m)	Carcinogenic PAHs (as BaP TEQ) [®]	TOTAL PAHs [†]	BENZO(a)PYRENE	NAPHTHALENE	DDT + DDE + DDD	ALDRIN & DIELDRIN	CHLORDANE	ENDOSULFAN	ENDRIN	HEPTACHLOR	НСВ	METHOXYCHLOR	0 0 0 0
Aarqus 2010			·											
S1	0.4	-			-	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	-
S2	0.3	0.6	<1.8	<0.10	<0.10	-	-	-	-	-	-	-	-	-
S3	0.4	0.6	<1.8	<0.10	<0.10	-	-	-	-	-	-	-	-	-
S6	0.5	-	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	-
Aargus 2021														
S7	0-0.1	0.6	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
S8	0-0.1	2.2	13.2	1.1	<0.5	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1
S9	0-0.1	0.6	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< '
S10	0-0.1	0.6	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< '
S11	0-0.1	0.6	< 0.5	< 0.5	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
S12	0-0.1	1.2	4.5	0.8	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
S13	0-0.1	1.0	1.8	0.6	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
S14	0-0.1	0.6	< 0.5	< 0.5	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
S15	0-0.1	0.6	< 0.5	< 0.5	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
S16	0-0.1	0.6	0.6	< 0.5	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
DUPLICATE D1	-	0.6	0.5	< 0.5	<0.5	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0
SPLIT SS1	-	1.0	2.9	0.6	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.
Practical Quantitation Limi	ts (PQL)	0.5	0.5	0.5	0.5	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.
NATIONAL ENVIRONME	NT PROTECTION MEASURE (201	3)												
Health Investigation Leve	els (HIL) - Table 1A (1)													
HIL A ^a		3	300			240	6	50	270	10	6	10	300	1
HIL B ^b		4	400			600	10	90	400	20	10	15	500	1
HIL C °		3	300			400	10	70	340	20	10	10	400	1
HIL D ^d		40	4000			3600	45	530	2000	100	50	80	2500	7

Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high rise buildings and apartments. b:

Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate c:

d: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites

Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF, given below, and summing these products. e:

PAH species	TEF	PAH species	TEF
Benzo(a)anthracene	0.1	Benzo(g,h,i)perylene	0.01
Benzo(a)pyrene	1	Chrysene	0.01
Benzo(b+j)fluoranthene	0.1	Dibenz(a,h)anthracene	1
Benzo(k)fluoranthene	0.1	Indeno(1,2,3-c,d)pyrene	0.1

Where the B(a)P occurs in bitumen fragments it is relatively immobile and does not represent a significant health risk.

Total PAHs: HIL is based on the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998). The application of the total PAH HIL should consider the f: presence of carcinogenic PAHs and naphthalene (the most volatile PAH). Carcinogenic PAHs reported in the total PAHs should meet the B(a)P TEQ HIL. Naphthalene reported in the total PAHs should meet the relevant HSL.

PCBs: HIL relates to non-dioxin-like PCBs only. Where a PCB source is known, or suspected, to be present at a site, a site-specific assessment of exposure to all PCBs (including dioxin-like PCBs) should be undertaken. g:

TABLE D ASBESTOS TEST RESULTS

		Analyte					
			Field Observations*	Material Sampled	Laboratory Results	Type of Asbestos	Laboratory Results
		/	Visible ACM detected (>7mm)	for Analysis	Asbestos Present / Absent	Present	Asbestos %w/w
Sample Location	Date Sampled	Depth (m)					
Aargus 2021							
S1	12.08.2021	-	No visible ACM observed	Soil	Chrysotile Asbestos detected	AF	0.0002
S2	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S3	12.08.2021		No visible ACM observed	Soil	Chrysotile Asbestos detected	AF	0.001
S4	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S5	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S6	12.08.2021		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S7	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S8	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S9	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S10	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S11	12.08.2021		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S12	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S13	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S14	12.08.2021		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S15	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
S16	12.08.2021		No visible ACM observed	Soil	No Asbestos detected	-	<0.001
DUPLICATE D1	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
SPLIT SS1	12.08.2021	-	No visible ACM observed	Soil	No Asbestos detected	-	<0.001
WA Guidelines	WA Guidelines for the Assessment, Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009						
National Enviro	nment Protectio	on (Assessm	ent of Site Contamination) Mea	sure 2013 Sched	ule B1		
%w/w asbestos for	FA and AF						0.001%
%w/w asbestos for ACM - Residential use, childcare centres, preschools etc.			0.01%				
%w/w asbestos for	ACM - Residentia	l, minimal soil	access (fully sealed surfaces)				0.04%
%w/w asbestos for	ACM - Parks, pub	lic open space	es, playing fields etc.				0.02%
%w/w asbestos for	%w/w asbestos for ACM - Commercial / Industrial 0.05%				0.05%		
All forms of Asbes	tos					No visible as	bestos for surface soils
Note:							

Note: ACM = Asbestos Containing Materials >7mm x 7mm (visible by eye) FA = Friable and Fibrous Asbestos Materials >7mm x 7mm and <7mm x 7mm AF = Asbestos Fines <7mm x 7mm ACM including free fibres (visible by microscope only)

* Field Observations: All ACM observed are assumed to contain Asbestos until otherwise tested and recorded as such.

NT = Not Tested

PREVIOUS REPORT

APPENDIX K

Environmental - Remediation - Engineering - Laboratories - Drilling

PRELIMINARY ENVIRONMENTAL SITE ASSESSMENT

5-7 and 9 Croydon Street, Lakemba NSW

Prepared for Pinestreet Development

March 2013

HEAD OFFICE: PO Box 398 Drummoyne NSW 1470 Aargus Pty Ltd ACN 050 212 710 • Aargus Holdings Pty Ltd ACN 063 579 313 Aargus Australia Pty Ltd ACN 086 993 937 • Aargus Recruitment Pty Ltd ACN 098 905 894 Telephone: 1300 137 038 • Facsimile: 1300 136 038 • Email: admin@aargus.net • Website: www.aargus.net

Other office locations in NSW - QLD - VIC - SA and 4 overseas countries

CONTROLLED DOCUMENT DISTRIBUTION AND REVISION REGISTER

DISTRIBUTION LIST

Copy No.	Custodian	Location
1	Nick Kariotoglou	Aargus Pty Ltd (Library)
2,3	Pinestreet Development	Unit 19, 39 Gould St, South Strathfield

Note: This register identifies the current custodians of controlled copies of the subject document.

It is expected that these custodians would be responsible for:

- the storage of the document
- ensuring prompt incorporation of amendments
- making the document available to pertinent personnel within the organization
- encouraging observance of the document by such personnel
- making the document available for audit

DOCUMENT HISTORY

Issue Date

0

15/03/2013

Initial Issue

Description

Issued By: Mark Ketty

Date: 15/03/2013

REFERENCES

- Australian and New Zealand Environment and Conservation Council (ANZECC) (1996) – Drinking Water Guidelines.
- Australian and New Zealand Environment and Conservation Council (ANZECC)
 (2000) Guidelines for Fresh and Marine Waters.
- Department of Urban Affairs and Planning EPA (1998) "Managing Land Contamination – Planning Guidelines – SEPP 55 – Remediation of Land".
- National Environmental Protection Council (NEPC) (1999) National Environmental Protection (Assessment of Site Contamination) Measure.
- > NSW EPA (1994) "Guidelines for Assessing Service Station Sites".
- > NSW EPA (1995) "Sampling Design Guidelines".
- > NSW EPA (2011) "Guidelines for Consultants Reporting on Contaminated Sites".
- > NSW DEC (2006) "Guidelines for the NSW Site Auditor Scheme".
- > NSW EPA (2009) "Guidelines on Significant Risk of Harm from contaminated land and the duty to report".
- NSW DECC "Waste Classification Guidelines, Part 1: Classifying Waste" (2009).
 Department of Environment and Climate Change NSW, Sydney

ABBREVIATIONS

AIP	Australian Institute of Petroleum Ltd
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	Aboveground Storage Tank
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethyl benzene and Xylene
COC	Chain of Custody
DA	Development Approval
DP	Deposited Plan
DQOs	Data Quality Objectives
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
HIL	Health-Based Soil Investigation Level
LGA	Local Government Area
NEHF	National Environmental Health Forum
NEPC	National Environmental Protection Council
NHMRC	National Health and Medical Research Council
OCP	Organochlorine Pesticides
OPP	Organophosphate Pesticides
PAH	Polycyclic Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PID	Photo Ionisation Detector
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance, Quality Control
RAC	Remediation Acceptance Criteria
RAP	Remediation Action Plan
RPD	Relative Percentage Difference
SAC	Site Assessment Criteria
SVC	Site Validation Criteria
TCLP	Toxicity Characteristics Leaching Procedure
TPH	Total Petroleum Hydrocarbons
UCL	Upper Confidence Limit
UST	Underground Storage Tank
VHC	Volatile Halogenated Compounds
VOC	Volatile Organic Compounds

TABLE OF CONTENTS

1.0	INTRODUCTION	9
2.0	OBJECTIVE	9
3.0	SCOPE OF WORKS	10
4.0	REVIEW OF INFORMATION AVAILABLE	10
4.1	SITE IDENTIFICATION, ZONING	10
4.2	LOCAL GEOLOGY, HYDROGEOLOGY, SURFACE WATERS	11
4.3	REVIEW OF AERIAL PHOTOGRAPHS	11
4.4	TITLE SEARCH	12
4.5	WORKCOVER RECORDS	14
4.6	NSW DECCW RECORDS	14
4.7	ANECDOTAL EVIDENCE	14
4.8	SUMMARY OF SITE HISTORY	15
4.9	PROPOSED DEVELOPMENT	
,		
5.0	SITE VISIT	16
5.0 5.1	SITE VISIT GENERAL	16
5.0 5.1 5.2	SITE VISIT GENERAL SITE OBSERVATIONS	16 16 16
5.0 5.1 5.2 5.3	SITE VISIT GENERAL SITE OBSERVATIONS SURROUNDING AREAS	16 16 16 17
5.0 5.1 5.2 5.3 6.0	SITE VISIT GENERAL SITE OBSERVATIONS SURROUNDING AREAS AREAS OF ENVIRONMENTAL CONCERNS	16 16 17 17
5.0 5.1 5.2 5.3 6.0 7.0 SI	SITE VISIT GENERAL SITE OBSERVATIONS SURROUNDING AREAS AREAS OF ENVIRONMENTAL CONCERNS TE ASSESSMENT CRITERIA	16 16 17 17 18 19
5.0 5.1 5.2 5.3 6.0 7.0 SI RE	SITE VISIT	16 16 17 17 18 19
5.0 5.1 5.2 5.3 6.0 7.0 SI RE RE	SITE VISIT	16 16 17 17 18 19 21
5.0 5.1 5.2 5.3 6.0 7.0 SI RE RE 8.0 SC	SITE VISIT	16 16 17 17 18 19 21 21
5.0 5.1 5.2 5.3 6.0 7.0 SI RE RE 8.0 SC 9.0 RI	SITE VISIT	16 16 17 17 18 19 19 21 22 24
5.0 5.1 5.2 5.3 6.0 7.0 SI RE RE 8.0 SC 9.0 RI 10.0	SITE VISIT	16 16 17 17 19 21 21 22 24 27

LIST OF TABLES

Table 1: Review of Aerial Photographs	. 12
Table 2: Historical land title data	. 13
Table 3: Summary of potential areas and chemicals of concerns	. 18
Table 4: Site Assessment Criteria	. 20
Table 5: Summary of sample information	. 23
Table 6: Heavy Metals Test Result	. 24
Table 7: TPH & BTEX Test Result	. 25
Table 8: PAH Test Result	. 25
Table 9: Organochlorine Pesticides Test Result	. 26

LIST OF APPENDICES

- APPENDIX A: SITE PLANS
- APPENDIX B: SITE PHOTGRAPHS
- APPENDIX C: LAND TITLE INFORMATION
- APPENDIX D: DECCW NOTICE SUMMARY
- APPENDIX E: BOREHOLE LOGS
- APPENDIX F: LABORATORY RESULTS
- APPENDIX G: IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL REPORT
- APPENDIX H: PROJECT TEAM
- APPENDIX I: AARGUS FIELDWORK PROTOCOLS
- APPENDIX J: PROPOSED DEVELOPMENT PLANS

EXECUTIVE SUMMARY

Aargus Pty Ltd (Aargus) was appointed by Mr Jason Youssef of Pinestreet Developments to undertake a Preliminary Environmental Site Assessment (PESA), Phase 1, for the properties situated at 5-7 and 9 Croydon Street, Lakemba NSW ("the site") (Figure 1 in Appendix A –Site Plans). The subject site comprises existing residential buildings which are to be demolished for the construction of three (3) multi-storey residential unit blocks.

This PESA has been requested by the current developer of the site, on behalf of the site owner, to determine the potential for onsite contamination arising from any areas of concern located within the site and its surrounding area. This report shall provide a preliminary assessment of any site contamination and, if required, provide a basis for a more detailed investigation.

A number of potential areas of environmental concerns were identified at the site, particularly:

- Where pesticides were potentially utilised within the site;
- Imported fill materials;
- Carpark areas / driveways where leaks and spills from cars may have occurred; and
- S Asbestos / Fibro within site features.

All concerns are considered of minimal (low) environmental concern for the following reasons:

- Pesticides are not persistent in the environment and the occurrence of pesticides within the school is considered low.
- Imported fill materials appeared to be minimal within the site and below the site assessment criteria.

- Car parking was on the concrete and grass surfaces, which were all in good condition. Furthermore, no contamination was identified beneath these surfaces.
- Asbestos / Fibro would be in a bonded form within the features and, if present, to be removed by a qualified asbestos contractor during demolition. Asbestos in a bonded form is considered non-friable and as such the building materials are considered safe.

Laboratory results for the soil samples analysed were all lower than the relevant regulatory guideline criteria adopted for this development (HIL 'D', HIL 'E' and NSW EPA Service Station).

In Summary

Based on the results of this investigation is considered that the risks to human health and the environment associated with soil contamination at the site are low in the context of the proposed use of the site. The site is therefore considered *to be suitable* for the proposed residential development.

It is recommended that a Hazardous Materials Assessment (HAZMAT) is carried out prior to redevelopment of the site.

Any soils proposed for removal from the site should initially be classified in accordance with the "*Waste Classification Guidelines, Part 1: Classifying Waste*" NSW DECC (2009).

Reference should be made to Section 11.0 of the report and Appendix G, which set out details of the limitations of the assessment.

1.0 INTRODUCTION

Aargus Pty Ltd (Aargus) was appointed by Mr Jason Youssef of Pinestreet Developments to undertake a Preliminary Environmental Site Assessment (PESA), Phase 1, for the properties situated at 5-7 and 9 Croydon Street, Lakemba NSW ("the site") (Figure 1 in Appendix A –Site Plans). The subject site comprises existing residential buildings which are to be demolished for the construction of three (3) multi-storey residential unit blocks.

This PESA has been requested by the current developer of the site, on behalf of the site owner, to determine the potential for onsite contamination arising from any areas of concern located within the site and its surrounding area. This report shall provide a preliminary assessment of any site contamination and, if required, provide a basis for a more detailed investigation.

A site visit was undertaken on 23^{rd} November 2010. Fieldwork and reporting was conducted in general accordance with the Aargus proposal and with reference to relevant regulatory criteria and Aargus protocols (Appendix I – Aargus Fieldwork Protocols).

2.0 OBJECTIVE

The objective of this PESA was to assess the potential for the soils at the site to have been impacted by previous and current activities undertaken at or adjacent to the site and to assess the site suitability for the proposed development.

This report may also recommend additional investigations and / or remediation works and possible strategies for the management of the site.

3.0 SCOPE OF WORKS

The scope of works for this PESA included:

- Research and review of the information available, including previous environmental investigations, past and current titles, aerial photographs, EPA records, council records and anecdotal evidence, site survey, site records on waste management practices;
- Site walkover, including research of the location of sewers, drains, holding tanks and pits, spills, patches of discoloured vegetation, etc;
- Limited soil sampling; and
- > Quality Assurance/Quality Control (QA/QC): work will be undertaken in accordance with the Aargus Protocols, which comply with regulations and are consistent with industry standards.

4.0 REVIEW OF INFORMATION AVAILABLE

4.1 Site identification, zoning

The site is located at 5-7 and 9 Croydon Street, Lakemba NSW. (Refer to Appendix A –Site Plans). The site comprises of Lot A and B in DP357959, Lot B in DP365853. Lot 1 in DP 974686 and Lot 2 in DP 971844 in the Local Government Area of Canterbury. The site is approximately L shaped and is approximately 0.6 hectares in size, and is bound by commercial properties to the north and northwest, Croydon Street then low density residential to the east, medium density residential to the south, and open parkland to the west.

4.2 Local geology, hydrogeology, surface waters

The Geological Map of Sydney (Geological Series Sheet 9130, Scale 1:100,000, 1983), published by the Department of Mineral Resources indicates the residual soils within the site to be underlain by Triassic Age Shale of the Wianamatta Group, comprising black to dark grey shale and laminite.

Based on a search of the NSW Natural Resource Atlas website database, the closest bore was located within a 1km west of the site. A search of the Department of Natural Resources (DNR) borehole database information identified approximately three (3) registered groundwater bores within a 1km radius of the site. The groundwater bore GW105393 is approximately 1km directly west of the site, and is mainly used for domestic purposes with each a recorded depth of 5.5m and no recorded standing water level. The groundwater bore GW107854 is approximately 2km due west of the site , and is mainly used for domestic purposes, has a recorded depth of 234.50m and a recorded standing water level of 36m. The groundwater bore GW109515 is approximately 2km due east of the site, is mainly used for monitoring purposes with a recorded depth of 6.5m and no recorded standing water level.

The nearest surface water body is Cook River approximately 3.5km to the north east. Stormwater from the local and surrounding areas would flow towards this water body.

4.3 Review of aerial photographs

A number of aerial photographs obtained from the NSW Department of Lands were reviewed as part of this PESA. Copies of the aerial photographs are kept in the offices of Aargus and are available for examination upon request. The results of this review are presented in the following table:

Year		Site	Surrounding areas
1930	Residential	The site appears to be occupied by a number of low density residential properties within the site, photograph is of poor quality.	The surrounding properties appear to be occupied by the following: N: Low Density Residential S: Low Density Residential E: Low Density Residential W: Low Density Residential The photograph is of poor quality.
1970	Residential	There seems to have been significant modifications to some of the residential properties onsite with some dwellings demolished leaving open grass areas.	The surrounding areas have changed their land use as follows: N: Commercial Properties S: Medium Density Residential Properties E: Medium Density Residential Properties W: Commercial & Medium Density Properties
1986	Residential	The site appears to be unchanged from the 1970 aerial photograph.	There appears to have been no major modifications within the surrounding area with the exception of a new commercial property to the north of the site.
1998	Residential	The site appears to be unchanged from the 1986 aerial photograph.	There appears to have been no major modifications within the surrounding area with the exception of a new commercial properties to the west of the site new medium density residential properties to the south of the site.
2010	Residential	The buildings onsite appear to have been demolished leaving only a concrete slab covering the whole of site.	There appears to have been no major modifications within the surrounding area with the exception of modifications to commercial properties to the north and northwest of the site.

Table 1: Review of Aerial Photographs

In summary, the aerial photographs reveal that the site has been residential since the 1930's, while the surrounding properties have been predominantly residential and commercial since the 1970's.

4.4 Title search

A review of historical documents held at the NSW Department of Lands offices was undertaken to characterise the previous land use and occupiers of the site. Reference should be made to Appendix C – Land Title Information for a summary of the historical land titles information obtained by Aargus.

As reported above, the site is located at 5-7 and 9 Croydon Street, Lakemba NSW. (Refer to Appendix A –Site Plans). The site comprises of Lot A and B in DP357959,

Lot B in DP365853, Lot 1 in DP 974686 and Lot 2 in DP 971844 in the Local Government Area of Canterbury.

Year	AC 8327 - 250	
2008 - Current	Samstone Pty Ltd and Sam Harb Pty Ltd	
1964 - 2008	The Presbyterian Church (NSW) Property Trust	
	Vol 3262 Fol 197	
1924 - 1964	Susanna Jane Merrick	
1921 - 1924	John Pearce Lakemba Engineer	
	Vol 2217 Fol 20	
1912 - 1921	George Pearce	
1831	Originally Granted to John Wall	
Year	Vol 7237 Fol 34	
1959	The Presbyterian Church (NSW) Property Trust	
1957 - 1959	Isabel Henrietta Little	
	Vol 6129 Fol 243	
1950	Raymond Charles Seaton Smith	
Year	Vol 7237 Fol 36	
1959	The Presbyterian Church (NSW) Property Trust	
	Vol 5816 Fol 191	
1956 - 1959	Isabel Henrietta Little and Gwen Poppy Sims	
1948 - 1956	Raymond Charles Seaton Smith	
Year	Vol 5517 Fol 191	
1945 - 1948	Raymond Charles Seaton Smith	

Table 2: Historical land title data

YearVol 5517 Fol 1911945 - 1948Raymond Charles Seaton SmithVol 1717 Fol 401907 - 1945Alma Janet Galloway and Dorothy GallowayPrior 1907Thomas Arthur Hale

In summary, the site has recently auto consolidated. The parcels of land are listed in the current title. The site has been owned by the Presbyterian Church from 1960 to 2008. Prior to the late 1950's the site was owned by a number of private land users. The land was originally granted to John Wall in 1831.

4.5 WorkCover records

No WorkCover search was undertaken for the site.

4.6 NSW DECCW records

The NSW DECCW publishes records of contaminated sites under Section 58 of the Contaminated Land Management (CLM) Act 1997. The notices relate to investigation and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act.

A search of the database revealed that the subject site is not listed. However, there are five (5) listed sites within the Canterbury City Council area. These properties have 4 current and 4 former notices relating to them, however, are not located near the site, therefore are not considered a cause of concern to the site.

It should be noted that the DECCW record of Notices for Contaminated Land does not provide a record of all contaminated land in NSW.

Copies of the records are included in Appendix D – DECCW Notice Summary.

4.7 Anecdotal evidence

Information provided by the current owner of the site, indicates that:

- The buildings were mainly used for low income residential since the 1930's
- No major modifications to the existing buildings since 1970's

4.8 Summary of site history

In summary:

- The site has recently auto consolidated. The parcels of land are listed in the current title. The site has been owned by the Presbyterian Church from 1960 to 2008. Prior to the late 1950's the site was owned by a number of private land users. The land was originally granted to John Wall in 1831.
- The aerial photographs reveal that the site has been residential since the 1930's, while the surrounding properties have been predominantly residential and commercial since the 1970's.
- Anecdotal information indicated that the site has been used for low income residential since the 1930's.

4.9 Proposed development

The site is proposed to be redeveloped into three (3) multi-storey residential unit blocks.

Copies of the proposed development plans are included in Appendix J.

5.0 SITE VISIT

5.1 General

The site was visited on 23rd November 2010 by Con Kariotoglou to inspect the site for any potential sources of contamination. (CVs are presented in Appendix H – Project Team).

The following items were considered as part of the site visit:

- O Description of the building structures;
- Site surroundings;
- Present and past industrial processes and operations at the site;
- Surface water, groundwater, stormwater and sewer;
- Present and past storage of chemicals and wastes associated with site use and their on-site location;
- Waste management practices and management of hazardous materials;
- Presence of Underground Storage Tanks or Above Ground Storage Tanks;
- C Odour; and
- Occupational health and safety.

5.2 Site observations

The site is located at 5-7 and 9 Croydon Street, Lakemba NSW, in the Canterbury City municipality.

At the time of the site visit the following observations were made:

- The site was approximately L shaped in dimension.
- The site comprises of existing residential buildings with open grass areas between building structures.
- There were no signs of soil staining, plant distress or any other visible indicators of potential contamination.
- There were no olfactory indicators of potential contamination.

- No chemical storage was noted within the site.
- There were no visual indicators of underground storage tanks (past or present).
- The only site discharges include stormwater and sewer. Stormwater run-off from the site is collected by collection drains towards the western boundary of the site. Sewer is connected to the regional network.

The site was a gentle slope towards the west and south west. The regional topography is generally towards the east towards the Cook River.

These site features are reported on Figure 2 in Appendix A – Site Plans and site photographs are presented in Appendix B – Site Photographs.

5.3 Surrounding areas

Surrounding land use was identified as follows:

North	Commercial
South	Medium Density Residential
East	Croydon Street, then Low Density Residential
West	Open Parkland and Playground

The district consists of a mixture of residential and commercial land uses.

6.0 AREAS OF ENVIRONMENTAL CONCERNS

Based on the above information, site history and site walkover, the areas of environmental concern (AEC) or associated chemicals of concern (CoC) for the site were identified. These are summarised in the following table.

Potential AEC	Description of potentially contaminating activity	CoC	Likelihood of contamination	Remarks
Whole site	Potential for pesticides to have been sprayed or injected on or underneath and around houses and within garden beds.	OCP	Low	If this has occurred, the impact is likely to have been localised.
Whole Site	Imported Fill	Various	Low	The source of the fill is unknown; however, minimal fill was encountered.
Car park areas / driveways	Vehicles may have leaked oil, petrol and other chemicals over time.	Metals, TPH, BTEX	Low	No significant staining was noted on any of the sealed / unsealed surfaces.
Existing Buildings	Asbestos / Fibro Features	Asbestos	Low	To be removed by a qualified contractor

Table 3: Summary of potential areas and chemicals of concerns

7.0 SITE ASSESSMENT CRITERIA

Regulatory criteria – soil

To assess the contamination status of soils at a site, the NSW EPA refers to the document entitled National Environmental Protection Council (1999) *National Environmental Protection (Assessment of Site Contamination) Measure* (NEPM).

The site is proposed to be redeveloped into a new residential development of three (3) multi-storey residential unit blocks.

With respect to human health, the analytical results are assessed against risk based health investigation (HIL) guidelines appropriate for the site as follows:

- (HIL 'D') Residential with minimal opportunities for soil access, including high-rise, apartments and flats.
- (HIL 'E') Parks, recreational open space, playing fields including secondary schools.

The NEPM 1999 does not include investigation levels for TPH and BTEX. For assessing contamination by these compounds at sites used for sensitive land use, such as residential, the NSW EPA refers to the NSW EPA (1994) "*Guidelines for Assessing Service Station Sites*". The NSW EPA has recommended that these threshold values should also be used to assess the suitability of sites for less stringent uses, such as residential with minimal access to the soil or parklands.

The adopted assessment criteria are presented in the following table.

Contaminant	Asse	ssment Criteria i	Source	
	HIL 'D'	HIL 'E'	NSW EPA	
Inorganics				
Arsenic	400	200	-	NEPM, 1999
Cadmium	80	100	-	NEPM, 1999
Chromium	48%/400	24%/200	-	NEPM, 1999
Copper	4,000	2000	-	NEPM, 1999
Lead	1,200	600	-	NEPM, 1999
Zinc	28,000	14000	-	NEPM, 1999
Nickel	2400	600	-	NEPM, 1999
Mercury	60	30	-	NEPM, 1999
Organics				
TPH/BTEX				
C ₆ to C ₉ Fraction	-	-	65	NSW EPA, 1994
C_{10} to C_{36}	-	-	1,000	NSW EPA, 1994
Benzene	-	-	1	NSW EPA, 1994
Toluene	-	-	1.4	NSW EPA, 1994
Ethylbenzene	-	-	3.1	NSW EPA, 1994
Total Xylenes	-	-	14	NSW EPA, 1994
PAH				
Benzo(a)pyrene	4	2	-	NEPM, 1999
Total PAH	80	40	-	NEPM, 1999
ОСР				
Aldrin + Dieldrin	40	20	-	NEPM, 1999
Chlordane	200	100	-	NEPM, 1999
DDT+DDD+DD	800	400	-	NEPM, 1999
Heptachlor	40	20	-	NEPM, 1999
PCB (Total)	40	20	-	NEPM, 1999
Total Phenols	34,000	17000	-	NEPM, 1999
Cyanides	1,000	500	-	NEPM, 1999

Table 4: Site Assessment Criteria

The EPA guidelines indicate that the assessment of soil test results and comparison with defined soil criteria should include consideration of a number of factors such as:

- 1. Land uses, e.g. residential, agricultural/horticultural, recreation or commercial/industrial.
- 2. Potential child occupancy.
- 3. Potential environmental effects including leaching into groundwater.

- 4. Single or multiple contaminants.
- 5. Depth of contamination.
- 6. Level and distribution of contamination.
- Bioavailability of contaminant(s), e.g. Related to speciation, route of exposure.
- 8. Toxicological assessment of the contaminant(s), e.g. Toxicokinetics, carcinogenicity, acute and chronic toxicity.
- 9. Physico-chemical properties of the contaminant(s).
- 10. State of the site surface, e.g. paved or grassed exposed.
- 11. Potential exposure pathways.
- 12. Uncertainties with the sampling methodology and toxicological assessment.

Regulatory criteria – export of fill

To assess the waste classification of materials to be disposed of off-site, the NSW DECC refers to the NSW DECC "Waste Classification Guidelines, Part 1: Classifying Waste" (2009).

8.0 SOIL SAMPLING AND ANALYSIS

Samples were recovered from six (6) locations within the site. These locations were selected to detect any contamination that may have originated from past and present activities.

The locations of the boreholes and surface samples are shown in Appendix A –Site Plans and details of the boreholes are presented in Appendix E – Borehole Logs.

Based on information from all boreholes, the surface and sub-surface profile across the site is generalised as follows:

- Grass;
- Fill, comprising silty clay, grey with a traces of gravel and brick underlain by;
- Natural, Silty Clay, medium plasticity, orang-brown. .

Selected samples were dispatched under chain of custody (CoC) conditions to SGS Environmental (SGS). The samples were selected for analysis based on the sample location and the material encountered. The laboratory information for the samples collected is shown in the following table below.

Sample	Depth (m)	Soil Description	Rational	Analytes
S 1	0.4	Fill	General Coverage	Met 8, OCP
S2	0.3	Fill	General Coverage	Met 8, PAH
S 3	0.4	Fill	General Coverage	Met 8, TPH, BTEX, PAH
S4	0.5	Fill	General Coverage	Met 8, TPH, BTEX
S5	0.3	Fill	General Coverage	Met 8, TPH, BTEX
S6	0.5	Fill	General Coverage	Met 8, OCP

Notes:

Met 8: Ar, Cd, Cr, Cu, Pb, Hg, Ni, Zn.

9.0 RESULTS

The original laboratory test results certificates are presented in Appendix F – Laboratory Test Results. A summary of the test results together with the assessment criteria adopted are presented in Tables 6, 7 and 8 below followed by a discussion of the test data.

	Analyte				METAL	S (mg/kg)			
		ARSENIC	CADMIUM	CHROMIUM	COPPER	NICKEL	LEAD	ZINC	MERCURY
Sample Reference	Depth(m)								
S1	0.4	6	<0.3	13	12	7.8	38	43	<0.05
S2	0.3	6	0.4	14	16	6	84	54	<0.05
S3	0.4	9	<0.3	12	5.6	1.5	14	26	<0.05
S4	0.5	6	0.5	12	25	4.5	56	110	0.06
S5	0.3	7	0.3	9.9	19	4.5	40	99	0.05
S6	0.5	11	0.4	12	21	4.1	72	160	0.28
Practical Quantitation L	imits (PQL)	3	0.3	0.3	0.5	0.5	1	0.5	0.05
NATIONAL ENVIRONM	IENT PROTECTION ME	ASURE (19	99)						
HIL 'D' a		400	80	48%/400	4000	2400	1200	28000	40/60
HIL 'E' ^b		200	40	24%/200	2000	600	600	14000	20/30

Table 6: Heavy Metals Test Result

b: Parks, recreational open space and playing fields, including secondary schools

c: 48% (480000mg/kg) for Chromium (+3) and 400mg/kg for Chromium (+6) for HIL 'D'.

d: 24% (240000mg/kg) for Chromium (+3) and 200mg/kg for Chromium (+6) for HIL 'E'.

e: 40mg/kg for Methyl Mercury and 60mg/kg for Inorganic Mercury for HIL 'D'.

f: 20mg/kg for Methyl Mercury and 30mg/kg for Inorganic Mercury for HIL 'E'.

As shown in Table 6, the metal concentrations were well below the adopted assessment guidelines, those being the HIL 'D' and 'E'.

	Analyte			TPH (mg/	<g)< th=""><th></th><th></th><th>BTEX</th><th>(mg/kg)</th><th></th></g)<>			BTEX	(mg/kg)	
		C6-C9	C10-C14	C15-C28	C29-C36	C10-C36 ^b	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES
Sample Location	Depth (m)									
S3	0.4	<20	<20	<50	<50	<120	<0.1	<0.1	<0.1	<0.3
S4	0.5	<20	<20	<50	<50	<120	<0.1	<0.1	<0.1	<0.3
S5	0.3	<20	<20	<50	<50	<120	<0.1	<0.1	<0.1	<0.3
Practical Quantitation Limi	ts (PQL)	20	20	50	50	NA	0.1	0.1	0.1	0.3
EPA Levels ^a		65		C	10-C36 =10	000	1	1.4	3.1	14
Notes a:	Contaminated S	ites: "Guid	elines for A	ssessing S	ervice Stati	ion Sites", 199	94, EPA			

Table 7: TPH & BTEX Test Result

Contaminated Sites: "Guidelines for Assessing Service Station Sites", 1994, EPA a: C10-C36 = (C10-C14) + (C15-C28) + (C29-C36); concentrations less than PQL are assumed equal to PQL. b:

NA: Not Applicable

As indicated in Table 7, the concentrations of TPH & BTEX were well below the NSW EPA Service Station guidelines.

		BENZO(a)PY RENE (mg/kg)	TOTAL PAH (mg/kg)
Sample Location	Depth (m)		
S2	0.3	<0.1	<1.8
S3	0.4	<0.1	<1.8
Practical Quantitation Limit (PC	QL)	0.1	NA
NATIONAL ENVIRONMENT F	ROTECTION		
MEASURE (1999)			
HIL 'D' ª		4	80
HIL 'E ▷		2	40

Table 8: PAH Test Result

Residential with minimal opportunities for soil access, including high-rise, apartments and flats

b: Parks, recreational open space and playing fields, including secondary schools

NA: Not Applicable

As shown in Table 8, the benzo(a)pyrene and Total PAH concentrations were well below the adopted assessment guidelines, those being the HIL 'D' and 'E'.

Analyti	ə	Org	anochlor	ine Pesti	cides (m	g/kg)	
Sample Location Depth (m)	HEPTACHLOR	ALDRIN	DIELDRIN	DDD	DDE	DDT	CHLORDANE (trans & cis)
S1 0.4	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2
S6 0.5	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2
Practical Quantitation Limits (PQL)	0.1	0.1	0.1	0.2	0.2	0.2	0.2
NATIONAL ENVIRONMENT PROTECTION							
MEASURE (1999)							
HL 'D' a	40	40	40		800		200
HL 'E'	20	20	20		400		100

Table 9: Organochlorine Pesticides Test Result

b: Parks, recreational open space and playing fields, including secondary schools

Commercial or industrial development c:

d: Aldrin + Dieldrin

Total of DDD + DDE + DDT e:

As shown in Table 9, the Organochlorine Pesticides concentrations were well below the adopted assessment guidelines, those being the HIL 'D' and 'E'.

10.0 CONCLUSION AND RECOMMENDATIONS

A number of potential areas of environmental concerns were identified at the site, particularly:

- Where pesticides were potentially utilised within the site;
- Imported fill materials;
- Carpark areas / driveways where leaks and spills from cars may have occurred; and
- Asbestos / Fibro in site features.

All concerns are considered of minimal (low) environmental concern for the following reasons:

- Pesticides are not persistent in the environment and the occurrence of pesticides within the school is considered low.
- Imported fill materials appeared to be minimal within the site and below the site assessment criteria.
- Car parking was on the concrete and grass surfaces, which were all in good condition. Furthermore, no contamination was identified beneath these surfaces.
- Asbestos / Fibro would be in a bonded form within the features and, if present, to be removed by a qualified asbestos contractor during demolition. Asbestos in a bonded form is considered non-friable and as such the building materials are considered safe.

Laboratory results for the soil samples analysed were all lower than the relevant regulatory guideline criteria adopted for this development (HIL 'D' and 'E' and NSW EPA Service Station).

In Summary

Based on the results of this investigation is considered that the risks to human health and the environment associated with soil contamination at the site are low in the context of the proposed use of the site. The site is therefore considered *to be suitable* for the proposed residential development.

It is recommended that a Hazardous Materials Assessment (HAZMAT) is carried out prior to redevelopment of the site.

Any soils proposed for removal from the site should initially be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW DECC (2009).

If during any potential site works, significant odours and / or evidence of gross contamination not previously detected are encountered, or any other significant unexpected occurrence, site works should cease in that area, at least temporarily, and the environmental consultant should be notified immediately to set up a response to this unexpected occurrence.

Thank you for the opportunity of undertaking this work. We would be pleased to provide further information on any aspects of this report.

For and on behalf of **Aargus Pty Ltd**

Con Kariotoglou Project Manager

Reviewed By

Mark Kethe

Mark Kelly Environmental Manager

11.0 LIMITATIONS

To the best of our knowledge information contained in this report is accurate at the date of issue, however, subsurface conditions, including groundwater levels and contaminant concentrations, can change in a limited time. This should be borne in mind if the report is used after a protracted delay.

There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site.

There is no investigation that is thorough enough to preclude the presence of material that presently or in the future, may be considered hazardous at the site. Since regulatory criteria are constantly changing, concentrations of contaminants presently considered low may, in the future, fall under different regulatory standards that require remediation.

Opinions expressed herein are judgements and are based on our understanding and interpretation of current regulatory standards and should not be construed as legal opinions.

Appendix G – Important information about your environmental site report should also be read in conjunction with this report.

APPENDIX A

LOCALITY MAP & SITE PLAN

LOCALITY MAP

APPENDIX B

SITE PHOTOGRAPHS

Client	Pinestreet Developments	
Project	Preliminary Environmental Site Assessment	
Location	5-7 and 9 Croydon Street, Lakemba	
Job No.	ES3897	
Checked By	MK	Aargus

Photograph N° 1

View of 5-7 Croydon Street looking west from Croydon Street

Photograph N° 3

Photograph N° 2

View of 9 Croydon Street looking west from Croydon Street

Showing typical brick residential building

View of 5-7 Croydon Street looking east from western boundary

Photograph N° 5

Showing typical brick residential building

Photograph N° 6

Showing typical brick residential building

APPENDIX C

LAND TITLE INFORMATION

AARGUS PTY LTD

LAND TITLE SEARCH SUMMARY

5-7 and 9 Croydon Street, Lakemba NSW

Ref No: ES3897 Current Owner: Samstone Pty Ltd Site Identification: Lot A and B in DP357959, Lot B in DP365853, Lot 1 in DP 974686 and Lot 2 in DP 971844 Local Government Area: Canterbury City Council County: Cumberland Parish: St George

Year	AC 8327 - 250			
2008 - Current	Samstone Pty Ltd and Sam Harb Pty Ltd			
1964 - 2008	The Presbyterian Church (NSW) Property Trust			
	Vol 3262 Fol 197			
1924 - 1964	Susanna Jane Merrick			
1921 - 1924	John Pearce Lakemba Engineer			
	Vol 2217 Fol 20			
1912 - 1921	George Pearce			
1831	Originally Granted to John Wall			

Year	Vol 7237 Fol 34
1959	The Presbyterian Church (NSW) Property Trust
1957 - 1959	Isabel Henrietta Little
	Vol 6129 Fol 243
1950	Raymond Charles Seaton Smith

Year	Vol 7237 Fol 36
1959	The Presbyterian Church (NSW) Property Trust
	Vol 5816 Fol 191
1956 - 1959	Isabel Henrietta Little and Gwen Poppy Sims
1948 - 1956	Raymond Charles Seaton Smith

Year	Vol 5517 Fol 191
1945 - 1948	Raymond Charles Seaton Smith
	Vol 1717 Fol 40
1907 - 1945	Alma Janet Galloway and Dorothy Galloway
Prior 1907	Thomas Arthur Hale

APPENDIX D

DECCW NOTICE SUMMARY

You are here: <u>Home</u> > <u>Contaminated land</u> > <u>Record of EPA notices</u>

Search results

Your search for: LGA: Canterbury City Council

Matched 8 notices relating to 5 sites.

			Search Again
Suburb	Address	Site Name	Notices related to this site
Campsle	403 Canterbury Road	Cheapa Petrol, Campsie	1 current
Campsle	60 Charlotte Street	Sunbeam Factory	3 former
Canterbury	13-19 Canterbury Road	Metro Petroleum Service Station	2 current
Hurlstone Park	618 New Canterbury Road	Speedway Fuels	1 current
Marrickville	Thornley Street/Wanstead Avenue	Sewer Aqueduct - Cooks River	1 former
Page 1 of 1			

1 December 2010

NSW Government | jobs.nsw

Accessibility | Privacy | Disclaimer | Copyright | Feedback

APPENDIX E

BOREHOLE LOGS

CLIENT Pinestre PROJECT Prelimin LOCATION 5-7 and METHOD Hand Au LOGGED BY CK	et Devel ary Envi 9 Croydo uger	opments ronmental Site on Street, Lak	e Assessment	BOREHOLE NO.	BH1/S1		
PROJECT Prelimin LOCATION 5-7 and METHOD Hand Au LOGGED BY CK	ary Envi 9 Croydo Jger	ronmental Site	e Assessment	IDATE.			
LOCATION 5-7 and METHOD Hand Au LOGGED BY CK	9 Croydo uger	on Street, Lak		DATE. 23.11.2010			
METHOD Hand Au LOGGED BY CK	uger		emba	JOB NO.	ES3897		
LOGGED BYICK				SURFACE ELEV.	N/A	Aarg	us
	1	1	-	CHECKED BY	MK	AUSTRA	LIA
(m) Sample Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Observat	ions	Well Construction	Design
0.5		F	FILL: Silty Clay, low plasticity, grey with a traces	s of gravel and brick			
		CI	NATURAL: Silty CLAY, medium plasticity, oran	ge brown			
1			Borehole Terminated @ 1.0m in CLAY				

 Standing groundwater level in bore
 Water seepage in borehole (wet) orehole

Samples

- BH1.0.5 - Soil sample taken at indicated depth
- s - Surface water sample
- GW/W - Groundwater sample/water sample

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water visible on soil surface

W Wet - Free water visible on soil surface Silt Sand

Gravel

- Particle size between 0.002 and 0.06mm

- Particle size between 0.06 and 2.0mm
- Strength
- Very Soft VS S Soft
- F Firm
- St Stiff
- VSt Very Stiff н Hard

- Particle size between 2.0 and 60mm
- - Unconfined compressive strength less than 25kPa

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa - Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

1	1				1			
CLIENT	Pinestre	et Devel	opments		BOREHOLE NO.	BH2/S2		
PROJECT	Prelimina	ary Envi	ronmental Site	e Assessment	DATE.	23.11.2010		
LOCATION	5-7 and	9 Croydo	on Street, Lak	emba	JOB NO.	ES3897		
METHOD	Hand Au	ıger			SURFACE ELEV.	N/A	Aarg	us
LOGGED BY	СК		1		CHECKED BY	MK	AUSTRA	LIA
Depth (m) Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Observat	ions	Well Construction	Design
0.5			F	FILL: Silty Clay, low plasticity, grey with a trace	s of gravel and brick			
1			CI	NATURAL: Silty CLAY, medium plasticity, orar	ige brown			
1 1.5 2.5 3.5 4.5 5				Borehole Terminated @ 1.0m in CLAY				
5.5 6 Log Symbols				Soil Classification				

- Water seepage in borehole (wet)

Samples

- BH1.0.5 - Soil sample taken at indicated depth
- s - Surface water sample
- GW/W - Groundwater sample/water sample

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water
- visible on soil surface W Wet
- Free water visible on soil surface

- Silt Sand Gravel
- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm
- Strength Very Soft VS
- S Soft
- F Firm
- St Stiff VSt Very Stiff
- н Hard

- Unconfined compressive strength less than 25kPa - Unconfined compressive strength 25-50kPa

- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

1	1				<u> </u>			
CLIENT	Pinestre	et Devel	opments		BOREHOLE NO.	BH3/S3		
PROJECT	Prelimin	ary Envi	ronmental Site	e Assessment	DATE.	23.11.2010		
LOCATION	5-7 and	9 Croydo	on Street, Lak	emba	JOB NO.	ES3897		
METHOD	Hand Au	uger			SURFACE ELEV.	N/A	Aarg	us
LOGGED BY	СК	1			CHECKED BY	MK	AUSTRA	LIA
Depth (m) Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Observat	ions	Well Construction	Design
0.5			F	FILL: Silty Clay, low plasticity, grey with a traces	s of gravel and brick			
			CI	NATURAL: Silty CLAY, medium plasticity, oran	ge brown			
1 1.5 2 2.5 3 3.5 4.5 5 5.5 1 1.5 1.5 1.5 1.5 1.5				Borehole Terminated @ 1.0m in CLAY				
Log Symbols		dwater lev	l el in borebole	Soil Classification	Particle size less than 0.00	12mm		

- Water seepage in borehole (wet)

Samples

BH1.0.5 - Soil sample taken at indicated depth - Surface water sample

s

GW/W - Groundwater sample/water sample

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water

visible on soil surface W Wet - Free water visible on soil surface Silt Sand

- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm
- Gravel Strength
- Very Soft VS
- F Firm
- St Stiff

- S Soft
- VSt Very Stiff
- н Hard
- Unconfined compressive strength less than 25kPa

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

CLIENT Pinestreet PROJECT Preliminar LOCATION 5-7 and 9 METHOD Hand Aug LOGGED BY CK Depth Sample Graphic (m) Sample Sample	t Developments ry Environmental Sitr Croydon Street, Lak ger Ground Classification	e Assessment emba	BOREHOLE NO. DATE. JOB NO. SURFACE ELEV.	BH4/S4 23.11.2010 ES3897		
PROJECT Preliminar LOCATION 5-7 and 9 METHOD Hand Aug LOGGED BY CK Depth Graphic (m) Sample Sample Graphic	ry Environmental Sit Croydon Street, Lak Jer Ground Classification	e Assessment emba	DATE. JOB NO. SURFACE ELEV.	23.11.2010 ES3897		
LOCATION 5-7 and 9 METHOD Hand Aug LOGGED BY CK Depth Sample Graphic G	Croydon Street, Lak Jer Ground Classification	emba	JOB NO. SURFACE ELEV.	ES3897		-
METHOD Hand Aug LOGGED BY CK Depth Sample Graphic G	ger Ground Classification		ISURFACE ELEV.			
Depth (m) Sample Graphic G	Ground Classification			N/A	Aarg	us
Depth (m) Sample Graphic G	Ground Classification		CHECKED BY	МК	AUSTRA	LIA
Symbol	Water Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Observat	ons	Well Construction	Design
0.5	F	FILL: Silty Clay, low plasticity, grey with a traces	of gravel and brick			
	CI	NATURAL: Silty CLAY, medium plasticity, orang	ge brown			
1 000000000 1.5 2.5 3.5 3.5 4.5 5.5 5.5 6		Borehole Terminated @ 1.0m in CLAY				

 Standing groundwater level in bore
 Water seepage in borehole (wet) orehole

Samples

- BH1.0.5 - Soil sample taken at indicated depth
- s - Surface water sample
- GW/W - Groundwater sample/water sample

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water
- visible on soil surface W Wet
- Free water visible on soil surface

Silt

- Sand Gravel
- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm
- Strength
- Very Soft VS
- S Soft
- F Firm St Stiff
- VSt Very Stiff
- н Hard

- Unconfined compressive strength less than 25kPa
- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

					•			
CLIENT	Pinestre	et Devel	opments		BOREHOLE NO.	BH5/S5		
PROJECT	Prelimin	ary Envi	ronmental Site	e Assessment	DATE.	23.11.2010		
LOCATION	5-7 and	9 Croydo	on Street, Lak	emba	JOB NO.	ES3897		
METHOD	Hand Au	ıger			SURFACE ELEV.	N/A	Aarg	us
LOGGED BY	СК				CHECKED BY	MK	AUSTRA	LIA
Depth (m) Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Observat	ions	Well Construction	Design
0.5			F	FILL: Silty Clay, low plasticity, grey with a trace	of gravel and brick			
 1			CI	NATURAL: Silty CLAY, medium plasticity, ora	nge brown			
1.5 2.5 2.5 3 3.5 4.5 5 5 5.5 6 Log Symbols				Borehole Terminated @ 1.0m in CLAY				

 Standing groundwater level in bore
 Water seepage in borehole (wet) orehole

Samples

- BH1.0.5 - Soil sample taken at indicated depth
- s - Surface water sample
- GW/W - Groundwater sample/water sample

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water
- visible on soil surface W Wet
 - Free water visible on soil surface

Silt

- Sand Gravel
- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Particle size between 2.0 and 60mm
- Strength
- VS
- F
- St Stiff

- Very Soft
- S Soft
- Firm
- VSt Very Stiff
- н Hard
- Unconfined compressive strength less than 25kPa - Unconfined compressive strength 25-50kPa

- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

	r				1			
CLIENT	Pinestre	et Devel	opments		BOREHOLE NO.	BH6/S6		
PROJECT	Prelimin	ary Envi	ronmental Site	e Assessment	DATE.	23.11.2010		
LOCATION	5-7 and	9 Croydo	on Street, Lak	emba	JOB NO.	ES3897		
METHOD	Hand Au	ıger			SURFACE ELEV.	N/A	Aarg	us
LOGGED BY	СК				CHECKED BY	МК	AUSTRA	LIA
Depth (m) Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Observat	ions	Well Construction	Design
0.5			F	FILL: Silty Clay, low plasticity, grey with a traces	s of gravel and brick			
			CI	NATURAL: Silty CLAY, medium plasticity, oran	ge brown			
1 1.5 2 2.5 3 3.5 4 4 5 5 5 5 5 5				Borehole Terminated @ 1.0m in CLAY				
6 Log Symbols		dwater lov		Soil Classification	Particle size less than 0.00	2mm		

- Water seepage in borehole (wet)

Samples

BH1.0.5 - Soil sample taken at indicated depth - Surface water sample

s

GW/W - Groundwater sample/water sample

Moisture Condition

- Runs freely through fingers D Dry
- M Moist - Does not run freely but no free water

visible on soil surface W Wet - Free water visible on soil surface Silt

Gravel

Sand

- Particle size between 0.002 and 0.06mm
- Particle size between 0.06 and 2.0mm
- Strength Very Soft VS
- S Soft
- F Firm
- St Stiff
- VSt Very Stiff н Hard
- Particle size between 2.0 and 60mm
- Unconfined compressive strength less than 25kPa

- Unconfined compressive strength 25-50kPa
- Unconfined compressive strength 50-100kPa
- Unconfined compressive strength 100-200kPa
- Unconfined compressive strength 200-400kPa
- Unconfined compressive strength greater than 400kPa

APPENDIX F

LABORATORY RESULTS

ANALYTICAL REPORT

30 November 2010

Aargus Pty Ltd

446 Parramatta Road PETERSHAM NSW 2049

Attention:	Con Kariotoglou		
Your Reference:	ES3897 - Lakemba		
Our Reference:	SE83441	Samples:	6 Soils 24/11/2010
Preliminary Report	Sent: Not Issued	Receiveu.	24/11/2010
These samples wer	e analysed in accordance with yo	our written instructi	ions.

For and on Behalf of: SGS ENVIRONMENTAL SERVICES

Sample Receipt: **Production Manager:** Angela Mamalicos Huong Crawford

AU.SampleReceipt.Sydney@sgs.com Huong.Crawford@sgs.com

Results Approved and/or Authorised by:

Ly Kim Ha

Organics Signatory

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 1 of 14

Huong Crawford

Metals Signatory

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t +61 (0)2 8594 0400 f + 61 (0)2 8594 0499

www.au.sgs.com

MBTEX in Soil				
Our Reference:	UNITS	SE83441-3	SE83441-4	SE83441-5
Your Reference		S3	S4	S 5
Depth		0.4	0.5	0.3
Sample Matrix Date Sampled		Soil 23/11/2010	Soil 23/11/2010	Soil 23/11/2010
Date Extracted (MBTEX)		26/11/2010	26/11/2010	26/11/2010
Date Analysed (MBTEX)		27/11/2010	27/11/2010	27/11/2010
Methyl-tert-butyl ether (MtBE)	mg/kg	<0.1	<0.1	<0.1
Benzene	mg/kg	<0.1	<0.1	<0.1
Toluene	mg/kg	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	<0.3	<0.3	<0.3
BTEX Surrogate (%)	%	90	94	86

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

 Page 2 of 14

 Environmental Services
 Unit 16/33 Maddox Street
 Alexandria NSW 2015
 Australia

 t +61 (0)2 8594 0400
 f + 61 (0)2 8594 0499
 www.au.sgs.com

TRH in soil with C6-C9 by P/T				
Our Reference:	UNITS	SE83441-3	SE83441-4	SE83441-5
Your Reference		S3	S4	S 5
Depth		0.4	0.5	0.3
Sample Matrix		Soil	Soil	Soil
Date Sampled		23/11/2010	23/11/2010	23/11/2010
Date Extracted (TRH C6-C9 PT)		26/11/2010	26/11/2010	26/11/2010
Date Analysed (TRH C6-C9 PT)		27/11/2010	27/11/2010	27/11/2010
TRH C6 - C9 P&T	mg/kg	<20	<20	<20
Date Extracted (TRH C10-C36)		26/11/2010	26/11/2010	26/11/2010
Date Analysed (TRH C10-C36)		26/11/2010	26/11/2010	26/11/2010
TRH C10 - C14	mg/kg	<20	<20	<20
TRH C15 - C28	mg/kg	<50	<50	<50
TRH C29 - C36	mg/kg	<50	<50	<50

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 3 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com

PAHs in Soil			
Our Reference:	UNITS	SE83441-2	SE83441-3
Your Reference		S2	S3
Depth		0.3	0.4
Sample Matrix		Soil	Soil
Date Sampled		23/11/2010	23/11/2010
Date Extracted		26/11/2010	26/11/2010
Date Analysed		26/11/2010	26/11/2010
Naphthalene	mg/kg	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10
Pyrene	mg/kg	<0.10	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.10	<0.10
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10
Total PAHs (sum)	mg/kg	<1.8	<1.8
Nitrobenzene-d5	%	121	108
2-Fluorobiphenyl	%	107	96
p -Terphenyl-d14	%	106	98

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 4 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com

OC Pesticides in Soil			
Our Reference:	UNITS	SE83441-1	SE83441-6
Your Reference		S1	S6
Depth		0.4	0.5
Sample Matrix		Soil	Soil
Date Sampled		23/11/2010	23/11/2010
Date Extracted		26/11/2010	26/11/2010
Date Analysed		26/11/2010	26/11/2010
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC (Lindane)	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
o,p-DDE	mg/kg	<0.1	<0.1
<i>alpha</i> -Endosulfan	mg/kg	<0.1	<0.1
trans-Chlordane (gamma)	mg/kg	<0.1	<0.1
cis-Chlordane (alpha)	mg/kg	<0.1	<0.1
trans-Nonachlor	mg/kg	<0.1	<0.1
p,p-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
o,p-DDD	mg/kg	<0.1	<0.1
o,p-DDT	mg/kg	<0.1	<0.1
<i>beta</i> -Endosulfan	mg/kg	<0.1	<0.1
p,p-DDD	mg/kg	<0.1	<0.1
<i>p,p</i> -DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Endrin Ketone	mg/kg	<0.1	<0.1
2,4,5,6-Tetrachloro-m-xylene (Surrogate	%	123	126

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

Page 5 of 14 Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com
Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE83441-1	SE83441-2	SE83441-3	SE83441-4	SE83441-5
Your Reference		S1	S2	S3	S4	S5
Depth		0.4	0.3	0.4	0.5	0.3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		23/11/2010	23/11/2010	23/11/2010	23/11/2010	23/11/2010
Date Extracted (Metals)		29/11/2010	29/11/2010	29/11/2010	29/11/2010	29/11/2010
Date Analysed (Metals)		29/11/2010	29/11/2010	29/11/2010	29/11/2010	29/11/2010
Arsenic	mg/kg	6	6	9	6	7
Cadmium	mg/kg	<0.3	0.4	<0.3	0.5	0.3
Chromium	mg/kg	13	14	12	12	9.9
Copper	mg/kg	12	16	5.6	25	19
Lead	mg/kg	38	84	14	56	40
Nickel	mg/kg	7.8	6.0	1.5	4.5	4.5
Zinc	mg/kg	43	54	26	110	99

Metals in Soil by ICP-OES		
Our Reference:	UNITS	SE83441-6
Your Reference		S6
Depth		0.5
Sample Matrix		Soil
Date Sampled		23/11/2010
Date Extracted (Metals)		29/11/2010
Date Analysed (Metals)		29/11/2010
Arsenic	mg/kg	11
Cadmium	mg/kg	0.4
Chromium	mg/kg	12
Copper	mg/kg	21
Lead	mg/kg	72
Nickel	mg/kg	4.1
Zinc	mg/kg	160

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 6 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE83441-1	SE83441-2	SE83441-3	SE83441-4	SE83441-5
Your Reference		S1	S2	S3	S4	S5
Depth		0.4	0.3	0.4	0.5	0.3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		23/11/2010	23/11/2010	23/11/2010	23/11/2010	23/11/2010
Date Extracted (Mercury)		29/11/2010	29/11/2010	29/11/2010	29/11/2010	29/11/2010
Date Analysed (Mercury)		29/11/2010	29/11/2010	29/11/2010	29/11/2010	29/11/2010
Mercury	mg/kg	<0.05	<0.05	<0.05	0.06	0.05

Mercury Cold Vapor/Hg Analyser		
Our Reference:	UNITS	SE83441-6
Your Reference		S6
Depth		0.5
Sample Matrix		Soil
Date Sampled		23/11/2010
Date Extracted (Mercury)		29/11/2010
Date Analysed (Mercury)		29/11/2010
Mercury	mg/kg	0.28

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 7 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

Moisture						
Our Reference:	UNITS	SE83441-1	SE83441-2	SE83441-3	SE83441-4	SE83441-5
Your Reference		S1	S2	S 3	S4	S5
Depth		0.4	0.3	0.4	0.5	0.3
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		23/11/2010	23/11/2010	23/11/2010	23/11/2010	23/11/2010
Date Analysed (moisture)		26/11/2010	26/11/2010	26/11/2010	26/11/2010	26/11/2010
Moisture	%	14	16	15	17	16

Moisture		
Our Reference:	UNITS	SE83441-6
Your Reference		S6
Depth		0.5
Sample Matrix		Soil
Date Sampled		23/11/2010
Date Analysed (moisture)		26/11/2010
Moisture	%	17

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

Page 8 of 14Environmental ServicesUnit 16/33 Maddox Streett +61 (0)2 8594 0400f + 61 (0)2 8594 0499www.au.sgs.com

Method ID	Methodology Summary
SEO-018	BTEX / C6-C9 Hydrocarbons - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.
SEO-020	Total Recoverable Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/FID. Where applicable Solid Phase Extraction Manifold technique is used for aliphatic / aromatic fractionation.
SEO-030	Polynuclear Aromatic Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/MS SIM mode.
SEO-005	OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082.
SEM-010	Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.
SEM-005	Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.
AN002	Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at $105 \pm 5^{\circ}$ C.

This document is issued in accordance with NATA's accreditation requirements. **NATA** with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 9 of 14

REPORT NO: SE83441

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
MBTEX in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (MBTEX)				26/11/1 0	[NT]	[NT]	LCS	26/11/10
Date Analysed (MBTEX)				27/11/1 0	[NT]	[NT]	LCS	27/11/10
Methyl-tert-butyl ether (MtBE)	mg/kg	0.1	SEO-018	<0.1	[NT]	[NT]	LCS	109%
Benzene	mg/kg	0.1	SEO-018	<0.1	[NT]	[NT]	LCS	114%
Toluene	mg/kg	0.1	SEO-018	<0.1	[NT]	[NT]	LCS	113%
Ethylbenzene	mg/kg	0.1	SEO-018	<0.1	[NT]	[NT]	LCS	114%
Total Xylenes	mg/kg	0.3	SEO-018	<0.3	[NT]	[NT]	LCS	121%
BTEX Surrogate (%)	%	0	SEO-018	122	[NT]	[NT]	LCS	130%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
TRH in soil with C6-C9 by P/T						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)				26/11/1 0	[NT]	[NT]	LCS	26/11/10
Date Analysed (TRH C6-C9 PT)				27/11/1 0	[NT]	[NT]	LCS	27/11/10
TRH C6 - C9 P&T	mg/kg	20	SEO-018	<20	[NT]	[NT]	LCS	129%
Date Extracted (TRH C10-C36)				26/11/1 0	[NT]	[NT]	LCS	26/11/10
Date Analysed (TRH C10-C36)				26/11/1 0	[NT]	[NT]	LCS	26/11/10
TRH C10 - C14	mg/kg	20	SEO-020	<20	[NT]	[NT]	LCS	106%
TRH C15 - C28	mg/kg	50	SEO-020	<50	[NT]	[NT]	LCS	126%
TRH C29 - C36	mg/kg	50	SEO-020	<50	[NT]	[NT]	LCS	105%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 10 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE83441

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				26/11/2 010	[NT]	[NT]	LCS	26/11/2010
Date Analysed				26/11/2 010	[NT]	[NT]	LCS	26/11/2010
Naphthalene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	109%
2-Methylnaphthalene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
1-Methylnaphthalene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	112%
Acenaphthene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	110%
Fluorene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Phenanthrene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	103%
Anthracene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	121%
Fluoranthene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	127%
Pyrene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	129%
Benzo[a]anthracene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Benzo[<i>b,k</i>]fluoranthe ne	mg/kg	0.2	SEO-030	<0.20	[NT]	[NT]	[NR]	[NR]
Benzo[a]pyrene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	LCS	109%
Indeno[<i>123-cd</i>]pyren e	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Dibenzo[<i>ah</i>]anthrace ne	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Benzo[ghi]perylene	mg/kg	0.1	SEO-030	<0.10	[NT]	[NT]	[NR]	[NR]
Total PAHs (sum)	mg/kg	1.8	SEO-030	<1.8	[NT]	[NT]	[NR]	[NR]
Nitrobenzene-d5	%	0	SEO-030	103	[NT]	[NT]	LCS	95%
2-Fluorobiphenyl	%	0	SEO-030	99	[NT]	[NT]	LCS	92%
p -Terphenyl-d 14	%	0	SEO-030	106	[NT]	[NT]	LCS	108%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 11 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE83441

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
OC Pesticides in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				26/11/2 010	[NT]	[NT]	LCS	26/11/2010
Date Analysed				26/11/2 010	[NT]	[NT]	LCS	26/11/2010
НСВ	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
gamma-BHC (Lindane)	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
Heptachlor	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	LCS	85%
Aldrin	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	LCS	79%
beta-BHC	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
delta-BHC	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	LCS	71%
Heptachlor Epoxide	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
o,p-DDE	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-Endosulfan	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
trans-Chlordane (gamma)	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
cis-Chlordane (alpha)	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
trans-Nonachlor	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
p,p-DDE	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
Dieldrin	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	LCS	89%
Endrin	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	LCS	101%
o,p-DDD	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
o,p-DDT	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-Endosulfan	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
p,p-DDD	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
p,p-DDT	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	LCS	82%
Endosulfan Sulphate	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
Methoxychlor	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Ketone	mg/kg	0.1	SEO-005	<0.1	[NT]	[NT]	[NR]	[NR]
2,4,5,6-Tetrachloro-m-xy lene (Surrogate	%	0	SEO-005	96	[NT]	[NT]	LCS	95%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 12 of 14

REPORT NO: SE83441

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Metals in Soil by ICP-OES						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Metals)				29/11/2 010	[NT]	[NT]	LCS	29/11/2010
Date Analysed (Metals)				29/11/2 010	[NT]	[NT]	LCS	29/11/2010
Arsenic	mg/kg	3	SEM-010	<3	[NT]	[NT]	LCS	101%
Cadmium	mg/kg	0.3	SEM-010	<0.3	[NT]	[NT]	LCS	106%
Chromium	mg/kg	0.3	SEM-010	<0.3	[NT]	[NT]	LCS	106%
Copper	mg/kg	0.5	SEM-010	<0.5	[NT]	[NT]	LCS	105%
Lead	mg/kg	1	SEM-010	<1	[NT]	[NT]	LCS	104%
Nickel	mg/kg	0.5	SEM-010	<0.5	[NT]	[NT]	LCS	104%
Zinc	mg/kg	0.5	SEM-010	<0.5	[NT]	[NT]	LCS	106%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Mercury Cold Vapor/Hg Analyser						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Mercury)				29/11/2 010	[NT]	[NT]	LCS	29/11/2010
Date Analysed (Mercury)				29/11/2 010	[NT]	[NT]	LCS	29/11/2010
Mercury	mg/kg	0.05	SEM-005	<0.05	[NT]	[NT]	LCS	108%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank
Moisture				
Date Analysed (moisture)				[NT]
Moisture	%	1	AN002	<1

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 13 of 14

SGS Australia Pty Ltd ABN 44 000 964 278

Result Codes

Report Comments						
[LOR]	:	Limit of reporting				
[NT]	:	Not tested				
[NR]	:	Not Requested				
[INS]	:	Insufficient Sample for this test				

[RPD] : Relative Percentage Difference : Not part of NATA Accreditation

[N/A] : Not Applicable

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Air-toxics and Dioxins/Furans*) This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Quality Control Protocol

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Quality Acceptance Criteria

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-ga-gc-plan-en-09.pdf

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 14 of 14

SGS Australia Ptv Ltd Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t +61 (0)2 8594 0400 f + 61 (0)2 8594 0499 www.au.sgs.com

ABN 44 000 964 278

SAMPLE RECEIPT ADVICE (SRA)

24 November 2010

Client Details			Laborato	Laboratory Details						
Requested By	:	Con Kariotoglou								
Client	:	Aargus Pty Ltd	Laborator	ry		SGS Environmental Services				
Contact	:	Administration Manager	Manager			Edward Ibrahim				
Address	:	446 Parramatta Road	Address			Unit 16, 33 Maddox Street				
		PETERSHAM NSW 2049				Alexandria NSW 2015				
Email	:	admin@aargus.net	Email			au.samplereceipt.sydney@sgs.com				
Telephone	:	1300 137 038	Telephone	е		61 2 8594 0400				
Facsimile	:	1300 136 038	Facsimile			61 2 8594 0499				
Project	:	ES3897 - Lakemba	Report No	D	:	SE83441				
Order Number	:		No. of Sa	mples		6				
Samples	:	6 Soils	Due Date		:	30/11/2010				
Date Instructions Received		24/11/2010								
Sample Respiret Date	:	24/11/2010								
	•	24/11/2010								
Samples received in good order	r	: YES	Samples received in correct of	container	3	YES				
Samples received without head	Ispac	• YES	Sufficient quantity supplied			YES				
Upon receipt sample temperature	re :	Cool	Cooling Method			Ice Pack				
Sample containers provided by		: SGS	Samples clearly Labelled : Completed documentation received :			YES				
Turnaround time requested		: Standard				YES				

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

Comments

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm as at the date of this document. Attention is drawn to the limitations of liablility and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.

SAMPLE RECEIPT ADVICE (SRA) - continued

Client	:	Aargus Pty Ltd	Report No	:	SE83441
Project	:	ES3897 - Lakemba			

Summary of Samples and Requested Analysis

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

e No.	ption	: Prep & Inorganics - All	X in Soil	soil with C6-C9 by P/T	in Soil	sticides in Soil	in Soil by ICP-OES	ry Cold Vapor/Hg Analyser	e
Sampl	Descri	Metals	MBTE	TRH ir	PAHs	OC Pe	Metals	Mercu	Moistu
1	S1	Х				Х	Х	Х	Х
2	S2	Х			Х		Х	Х	Х
3	S3	Х	Х	Х	Х		Х	Х	Х
4	S4	Х	Х	Х			Х	Х	Х
5	S5	Х	Х	Х			Х	Х	Х
6	S6	Х				Х	Х	Х	Х

Sample No.	Description
1	S1
2	S2
3	S3
4	S4
5	S5
6	S6

wer water sample, plastic bott	WG Water sample, glass bottle	Legend:	Con Kariotoglou	Name						S6	S2	4 S4	2 23	70 70		2		Location	Sampling details	PH: 02 8594 0400 ATTN:	ALEXANDRIA NSW 20	UNIT 16	446 Parramatta Road PETERSHAM NSW 2049		AARGUS PTY I T			
tle DSG Disturb	e USG Undistu		CK CK	Signature	Relinquished by					0.5 0.50	0.3 DSG	0.5 DSG	0.4 DSG	0.3 DSG	U.4 DSG		(m)	Depth Soil Wate	S Sample type	FAX: 02 85	015		P O Box 39 DRUMMOYNE NSW 147	C	J			
ed soil sample (glass jar)	irbed soil sample (glass jar)	23.11.2010	011 0040	Dato								~	X	×	~	As, Cd, Cr, Cu, Pb, Hg, Ni and Zn		<u>-</u> [94 0499			Tel: 1300 137 98 Fax: 1300 136 70 email: adming					
✓ Test requir	DSP Disturbed	1 huge	Name											~		TPH / PAH BTEX		Results require		Project Manager:	Sampled By:	Sampling Date:	038 038 @aargus.net	Labo				
ed	soil sample (small plastic	191							<							OCP	er egt i weeddy,	ed by:Tuesday		Ŷ	CX	23.11.2010		ratory Test Rec				
9	bao)	when	Signature	Received by		No. of Concession, Name		io. a transmission			By	ABCBINGO X	and and		「「「「「」」	-	00-11-2010	30 - 11 - 2040 h		Location: Laker	Project: Laker	Job No: ES38	p	uest / Chain of			Kevis	0
	0	24/11/2000 @ 10	Date			SC 83441	*: 5830-58	Mar Soc.	Nos	Ser Ser	S. Same	dillico	1 12 40			19-10-0 	у фрин	- Anno		nba	nba	97		Custody Recor	, -	24 1	y lol.	000
n junne		Sou							YES	YES	YES	YES	YES	YES		SAMPLE						-	*	ġ	an a	61	~	

24/11/2010 17:13 0295686179

AARGUS PTY LTD

PAGE 02

APPENDIX G

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL REPORT

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Aargus (Australia) Pty Ltd and its associated companies using guidelines prepared by ASFE (The Association) of Engineering Firms Practising in the Geo-sciences. They are offered to help you in the interpretation of your Environmental Site Assessment (ESA) reports.

REASONS FOR CONDUCTING AN ESA

ESA's are typically, though not exclusively, carried out in the following circumstances:

- as pre-acquisition assessments, on behalf of either purchaser or vender, when a property is to be sold;
- as pre-development assessments, when a property or area of land is to be redeveloped or have its use changed for example, from a factory to a residential subdivision;
- as pre-development assessments of greenfield sites, to establish "baseline" conditions and assess environmental, geological and hydrological constraints to the development of, for example, a landfill; and
- as audits of the environmental effects of an ongoing operation.

Each of these circumstances requires a specific approach to the assessment of soil and groundwater contamination. In all cases however, the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the proposed activity. Such risks may be both financial, for example, cleanup costs or limitations on site use, and physical, for example, health risks to site users or the public.

THE LIMITATIONS OF AN ESA

Although the information provided by an ESA could reduce exposure to such risks, no ESA, however, diligently carried out can eliminate them. Even a rigorous professional assessment may fail to detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled.

AN ESA REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

Your environmental report should not be used:

- when the nature of the proposed development is changed, for example, if a residential development is proposed instead of a commercial one;
- when the size or configuration of the proposed development is altered;
- when the location or orientation of the proposed structure is modified;
- when there is a change of ownership
- or for application to an adjacent site.

To help avoid costly problems, refer to your consultant to determine how any factors, which have changed subsequent to the date of the report, may affect its recommendations.

ESA "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of contamination, its likely impact on the proposed development and appropriate remediation measures. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to help minimise its impact. For this reason owners should retain the services of their consultants

through the development stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Natural processes and the activity of man change subsurface conditions. As an ESA report is based on conditions, which existed at the time of subsurface exploration, decisions should not be based on an ESA report whose adequacy may have been affected by time. Speak with the consultant to learn if additional tests are advisable.

ESA SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Every study and ESA report is prepared in response to a specific brief to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Other persons should not use a report for any purpose, or by the client for a different purpose. No individual other than the client should apply a report even apparently for its intended purpose without first conferring with the consultant. No person should apply a report for any purpose other than that originally contemplated without first conferring with the consultant.

AN ESA REPORT IS SUBJECT TO MISINTERPRETATION

when design occur Costly problems can develop their plans based on professionals misinterpretations of an ESA. To help avoid these problems, the environmental consultant should be appropriate design work with retained to professionals to explain relevant findings and to review the adequacy of their plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final borehole or test pit logs are developed by environmental scientists, engineers or geologists based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final logs These logs customarily included in our reports. should not under any circumstances be redrawn for inclusion in site remediation or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimise the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To reduce the likelihood of boring log misinterpretation, the complete report must be available to persons or organisations involved in the project, such as contractors, for their use. Those who o not provide such access may proceed under the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing all the available information to persons and organisations such as contractors helps prevent costly construction problems and the adversarial attitudes that may aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because an ESA is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in transmittals. These are not exculpatory clauses designed to foist liabilities onto some other party. Rather, they are definitive clauses that identify where your consultant's responsibilities begin and end. Their use helps all parties involved recognise their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your ESA report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

APPENDIX H

PROJECT TEAM

C O N K A R I O T O G L O U

DATE OF BIRTH	10 th December 1962
EDUCATIONAL	Bachelor of Science Sydney University, Sydney Australia Advanced Certificate, Graphic Design Billy Blue School of Graphic Arts
ADDITIONAL COURSES	Certificate, Building Business Management Certificate, Desktop Publishing
FIELDS OF SPECIAL	
COMPETENCY	Occupational Health & Safety. Hazardous Materials Assessment. Management, technical advice, planning, data evaluation, coordinating and supervision of environmental/contaminated site assessments including preliminary and detailed

assessments.

EXPERIENCE:

2007-present	Project Manager, Aargus Pty Ltd, Sydney
2002-2007	Creative Director, Howling Media
1996-2002	Senior Environmental Manager, EnviroSciences
1990-1996	OH&S Officer, EnviroSciences
1988-1990	Scientific Officer, Sydney Diagnostic Services
1986-1988	Technical Officer, Douglas Laboratories

PROJECT EXPERTISE

Air Quality Monitoring – Levels of volatile gases were monitored to determine Occupational Health and Safety (OH&S) compliance within an enclosed work environment.

Acid Sulphate Soil Assessment – Development areas within potential Acid Sulphate Soil regions were assessed to determine the presence, absence or extent of Acid Sulphate Soils. Duties included site surveys, soil sampling, chemical testing of soils, preparation of borehole logs, liaising with clients and regulatory authorities and report generation.

Asbestos Monitoring – Dust emissions from the demolition of a building and excavation of soil with known asbestos contamination were monitored in order to measure effects on the neighbouring properties. Duties included the use of technical equipment, liaising with site personnel, analysis of data and report generation.

Asbestos Removal – Work involved monitoring the removal and delineating the extent of contamination of bonded asbestos waste from an excavation site.

Classification of Excavation Material, NSW – Involvement in classifying excavated material from development sites for removal to an appropriate landfill or assessing suitability for use within a proposed development. Duties included liaising with site personnel / contractors, soil sampling and descriptions, QA/QC and report generation.

Dust Monitoring – Dust emissions from construction sites were collected over a period of time in order to assess the specific amount of particulate matter escaping the construction area onto neighbouring properties.

Environmental Management Plans – Preparation of how the earthworks program are to be undertaken during the development works, the environmental procedures to be followed during operation and includes an Occupation Health & Safety (OH&S) plan.

Ground Water Well Monitoring – Work involved instructing contractors on where to drill monitoring wells, construction and interpretation of survey data of the wells, measurements of groundwater levels, measurement of the rate of groundwater infiltration, sampling of groundwater, QA/QC, determining groundwater flow direction and report generation

Hazardous Materials Assessment – Structures proposed for demolition were surveyed for hazardous material such as asbestos, lead and other substances known to be harmful to human health and the environment. Duties included liaising with contractors and regulatory authorities, identification of hazardous materials, sampling of potential hazardous materials and report generation.

Lead Assessment – Buildings were surveyed for lead paint, dust and soils and assessed to determine if they were harmful to human health and the environment. Duties included liaising with government, regulatory authorities, identification of lead based materials, sampling of these materials and report generation.

Phase 1 Environmental Site Assessments (desktop) – Duties included historical searches, analysing aerial photographs, liaising with authorities (WorkCover, Council's, EPA etc), identification of potential contaminants and report generation.

Phase 2 Environmental Site Assessments – Duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.

Remedial Action Plans – Options for the remediation of known contaminated sites were prepared in order to determine the most efficient methods of remediation. Duties included reviewing of previous environmental assessments, data analysis, design and costing of potential remedial options.

Site Based Management Plans – includes detailed management practices, and procedures for all identified environmental issues for every environmentally relevant activity (ERA) within the site. The plans provide the environmental procedures to be followed during operation and are to safeguard the way in which waste is managed.

Soil Vapour Survey – Soil vapours originating from beneath an apartment block development containing known contamination were monitored to assess the affects on human health. Duties included operation of technical equipment, sampling of soil vapours, QA/QC, analysis of data and report generation.

Targeted Environmental Site Assessments – Duties included historical searches, analysing aerial photographs, liaising with authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.

Underground Storage Tank Removal – Removal of underground storage tanks in order to satisfy regulatory requirements for the redevelopment of sites. Duties included historical searches, liaising with contractors and regulatory authorities, sampling and analysis design, soil and groundwater sampling, decontamination, QA/QC, data analysis and report generation.

MARK KELLY

DATE OF BIRTH	25 th October 1975
EDUCATIONAL QUALIFICATIONS	BAppSc (Geology) (Hons) University of New South Wales, Sydney, Australia Majoring in Soil and Groundwater Resources and Remediation
ADDITIONAL COURSES	Groundwater Hydrology Hydrogeochemistry Analysis and Interpretation of Hydrogeochemical Data Physical Aspects of Contaminated Groundwater Interpretation of Aeromagnetics Structural Interpretation and Analysis
PROFESSIONAL MEMBERSHIP	Geological Society of Australia (GSA)
PROFESSIONAL LICENCES	Senior First Aid Certificate (2006) X-ray Fluorescence (XRF) Metal Detector Operation License (EPA License No 24430) Energy Australia Passport (Service No. 7728)
PROFESSIONAL TRAINING	Asbestos Removal Course (TAFE NSW) XRF Training Course Energy Australia inductions, electrical safety rules, environmental training, safety training, first aid training, CPR training, low voltage release and rescue training and courses, substation entry & safely working near live power cables in EA network courses
FIELDS OF SPECIAL COMPETENCY	Contaminated Land Assessment and Site Remediation – management, technical advice, planning, data evaluation, coordinating and supervision of environmental/contaminated site assessments including preliminary and detailed assessments, contaminated site remediation and validation with particular reference to soil, water and groundwater. Acid sulphate soils, salinity and hazardous materials assessments.
EXPERIENCE:	

2007 – Present	Senior Environmental Geologist – Aargus Pty Ltd
2006 - 2007	Senior Environmental Geologist - Geotechnique Pty Ltd
1999 - 2006	Environmental Geologist – Geotechnique Pty Ltd

PRACTICAL EXPERIENCE (Office)	 Project management, scheduling laboratory chemical analysis, data evaluation and reporting on environmental/contaminated site investigations including preliminary, detailed assessments, remediation and validation Preparation of waste classification, including biosolids from sewage treatment plants Salinity Assessments Preparation of proposals Occupational Health & Safety Issues Environmental Management Plans Coordinating and corresponding with Principal/Senior Environmental Engineers, Environmental Engineers, field staff, management, clients and contractors Liaising and negotiating with relevant government departments, statutory authorities Basic Turbocad skills 	
PRACTICAL EXPERIENCE (Field)	 Site inspections Soil and water sampling Installation of groundwater monitoring wells Assessing the contamination status of land/water Site remediation and validation Site management including remediation, asbestos removal PID calibration and use Hazardous material assessment Salinity indicators Service station works including underground storage tank removal Gas monitoring 	

SITES

Investigations have been carried out on a number of sites across the Sydney Metropolitan area, the greater Sydney area, rural NSW and interstate. The types of sites assessed include:

- Rural residential properties including active and former agricultural (market gardens, orchards, nursery, poultry) lands, farming lands, vacant lands etc
- Residential Properties including residential, townhouse and units

Commercial / Industrial including activities such as tanneries, printing, tyre storage and manufacture, paint storage and manufacture, metal works, foundries, wheat processing and storage, scrap metal yards, metal recyclers etc

- Service Station Sites including small scale operations to larger sites operated by BP, Caltex etc.
- Schools including pre-development, re-development, refurbishing, hazardous materials assessment.
- Childcare Facilities
- Energy Australia facilities including active sites and decommissioning of sites.
- Sewage Treatment Plants including the assessment of biosolids, installation works and initialization of site management plans and inspections.

PROJECT EXPERTISE

Air Quality Monitoring – Levels of volatile gases were monitored to determine Occupational Health and Safety (OH&S) compliance within an enclosed work environment.

Acid Sulphate Soil Assessment – Development areas within potential Acid Sulphate Soil regions were assessed to determine the presence, absence or extent of Acid Sulphate Soils. Duties included site surveys, soil sampling, chemical testing of soils, preparation of borehole logs, liaising with clients and regulatory authorities and report generation.

Asbestos Monitoring – Dust emissions from the demolition of a building and excavation of soil with known asbestos contamination were monitored in order to measure effects on the neighbouring properties. Duties included the use of technical equipment, liaising with site personnel, analysis of data and report generation.

Asbestos Removal – Work involved monitoring the removal and delineating the extent of contamination of bonded asbestos waste from an excavation site.

Buried Chicken Carcass Removal – Work involved monitoring the removal and delineating the extent of buried of chicken carcasses within an existing poultry farm.

Classification of Excavation Material, NSW – Involvement in classifying excavated material from development sites for removal to an appropriate landfill or assessing suitability for use within a proposed development. Duties included liaising with site personnel / contractors, soil sampling and descriptions, QA/QC and report generation.

Dilapidation Assessment –The assessment entailed a site visit and a written and photographic documentation of all structural cracks on walls, ceilings, pavements, grates and road surfaces in the vicinity of the site. The purpose is to establish the preexisting condition of the buildings so that any claim made for defects that occur during or after construction can be validated. Duties included liaising with site personnel / contractors, site inspection and report generation. *Due Diligence Reports* – Carried out in relation to property acquisition and due diligence. Duties varied from report reviews, comments, costing, desktop studies, sampling and assessment, and reporting.

Dust Monitoring – Dust emissions from construction sites were collected over a period of time in order to assess the specific amount of particulate matter escaping the construction area onto neighbouring properties.

Effluent Disposal – Work was undertaken to assess the suitability of soil material for the construction of an effluent treatment and disposal system. Duties included soil sampling, preparation of borehole logs, calculation of permeability and flow rates and report generation.

Environmental Management Plans – Preparation of how the earthworks program are to be undertaken during the development works, the environmental procedures to be followed during operation and includes an Occupation Health & Safety (OH&S) plan.

Ground Water Well Monitoring – Work involved instructing contractors on where to drill monitoring wells, construction and interpretation of survey data of the wells, measurements of groundwater levels, measurement of the rate of groundwater infiltration, sampling of groundwater, QA/QC, determining groundwater flow direction and report generation

Hazardous Materials Assessment – Structures proposed for demolition were surveyed for hazardous material such as asbestos, lead and other substances known to be harmful to human health and the environment. Duties included liaising with contractors and regulatory authorities, identification of hazardous materials, sampling of potential hazardous materials and report generation.

Lead Assessment – Buildings were surveyed for lead paint, dust and soils and assessed to determine if they were harmful to human health and the environment. Duties included liaising with government, regulatory authorities, identification of lead based materials, sampling of these materials and report generation.

Phase 1 Environmental Site Assessments (desktop) – Duties included historical searches, analysing aerial photographs, liaising with authorities (WorkCover, Council's, EPA etc), identification of potential contaminants and report generation.

Phase 2 Environmental Site Assessments – Duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.

Remedial Action Plans – Options for the remediation of known contaminated sites were prepared in order to determine the most efficient methods of remediation. Duties included reviewing of previous environmental assessments, data analysis, design and costing of potential remedial options.

Remediation Validation – The collection of data to assess the efficacy of remediation works in decontaminating sites. Duties included liaising with clients, contractors and regulatory authorities, field sampling, QA/QC, data analysis and report generation.

Salinity Assessments – Duties included historical searches, analysing aerial photographs, liaising with authorities, identification of potential contaminants, sampling and analysis design, soil sampling, preparation of borehole logs, decontamination, QA/QC and report generation.

Sampling and Testing Plans – Preparation of sampling location, sampling density and testing program for ESA's and RemVal's that are sent to the Site Auditor for approval.

Site Audit Responses – replying to comments made by NSW Site Auditors on selected jobs to meet final requirements for a full clearance of a site after remedial works have taken place.

Site Based Management Plans – includes detailed management practices, and procedures for all identified environmental issues for every environmentally relevant activity (ERA) within the site. The plans provide the environmental procedures to be followed during operation and are to safeguard the way in which waste is managed.

Soil Vapour Survey – Soil vapours originating from beneath an apartment block development containing known contamination were monitored to assess the affects on human health. Duties included operation of technical equipment, sampling of soil vapours, QA/QC, analysis of data and report generation.

Targeted Environmental Site Assessments – Duties included historical searches, analysing aerial photographs, liaising with authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.

Underground Storage Tank Removal – Removal of underground storage tanks in order to satisfy regulatory requirements for the redevelopment of sites. Duties included historical searches, liaising with contractors and regulatory authorities, sampling and analysis design, soil and groundwater sampling, decontamination, QA/QC, data analysis and report generation.

MAJOR PROJECTS

- Auburn Hospital Various soil classifications and leachate management for an EPA inert and solid licensed landfill.
- Australian Defence Industries site, St Marys Former defence force lands. An extensive sampling program was managed and the results of soil analysis were reviewed with respect to human heath risk and potential ecological impact. Reports endorsed by accredited site auditor.
- Auburn Catholic Club Sampling and soil classification of soils, followed by onsite management of the disposal of the soils to licensed landfills.
- Barter & Sons Former poultry farm, scheduled for industrial / commercial development. Responsible for cost estimating, project management and co-

ordination of site investigation works. Included a review of available site history, and contamination assessment of soils, targeting heavy metals, pesticides and asbestos. Remediation recommended landfill disposal (industrial and solid waste category).

- Brown Consulting (NSW) Group Newbury Estate, Stanhope Gardens Former market garden and grazing site developed for low density residential purposes. Responsible for cost estimating, project management and co-ordination of site investigation works, remediation and validation. Included review of site history information, contamination assessment of soils waters and sediment. Remediation recommendations included Landfill disposal and land farming. Reported on site investigations, remediation options (Remediation Action Plan), and validation. Reports endorsed by accredited site auditor.
- Columban Mission Institute, North Turramurra Duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.
- Cronulla Sewage Treatment Plant Classification of biosolids for disposal off site to other land uses or to landfills.
- Deicorp Pty Ltd Coulson Street, Erskineville Former clothing factory and workshops with a UST to be redeveloped into a number of multi-storey residential apartment blocks. The collection of data to assess the efficacy of remediation works in decontaminating the site. Duties included liaising with clients, contractors and regulatory authorities, field sampling, QA/QC, data analysis and report generation. Reports endorsed by accredited site auditor.
- Department of Commerce Assessment of a number of Department of Housing sites for potential hazardous materials within active housing commission units.
- Department of Housing Lilyfield Development of a residential area. Duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.
- Department of Lands Redfern Development of a major residential area. Duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.
- Duffy Kennedy Constructions Cronulla A former service station site. Sampling and soil classification of soils, followed by onsite management of the disposal of the soils to licensed landfills.

- EG Property Group / Funds Management –Port Adelaide, SA, Summer Hill and Five Dock, NSW –Active transport company, wheat production plant and silos, former bowling greens, former railway lines, land filling activities, land reclamation. Reports for due diligence and full environmental site assessments, duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil and groundwater sampling, preparation of borehole logs, decontamination, QA/QC and report generation.
- Energy Australia Substations Various soil classifications and leachate management for an EPA inert and solid licensed landfill.
- Event Project Management Bundaleer Street, Belrose An active nursery to be redeveloped as part of extension works to the Covenant Christian School. A Phase 1 and Phase 2 contaminated land investigation with recommendations for remediation techniques and costs.
- Exceland Property Group (NSW) Pty Ltd The Castellorizian Club at Kingsford. Duties included historical searches, analysing aerial photographs, liaising with authorities (WorkCover, Council's, EPA etc), identification of potential contaminants and report generation.
- Glasson Family Group Wolli Creek A large development site comprising a number of industrial properties including factories, warehouses, car yards etc. Conducting sampling and reporting on ASS/PASS and potential management techniques during future development.
- Glenbrook Sewer Installation Environmental Representative for sewer installation contracts in Glenbrook. Responsible for the preparation of Environmental Management Plans (EMP) and work method statements. Monitored the works undertaken by the contractor, ensuring adequate environmental safeguards are in place and maintained. Prepared inspection reports and EMP status reports for Sydney Water.
- Granville Boys High School assessment of soils and supervision of remedial works within an existing playing field. Remedial works included removal of soils contaminated with asbestos to an EPA licensed landfill.
- Group Development Services Carrying out full assessments, from Stage 1 to Stage 4, on numerous rural residential sites in north western Sydney.
- International Speedway, Granville Assessment of an existing spectator mound for asbestos and other soils analytes and recommendations for capping on-site.
- IWD Pty Ltd Lyons Road, Drummoyne A former service station with numerous UST's. The assessment included tank and line tests, gross pollution review, soil

sampling, groundwater sampling, historical review and final data interpretation. Remediation of contaminated soils after the tanks were removed, soil classification and final validating of site surfaces. Reports endorsed by accredited site auditor.

- S JK Williams Contracting Pty Ltd Various soil classifications and leachate management for an EPA inert and solid licensed landfill.
- John Morony Correctional Complex, Berkshire Park assessment of soils and preparation of remedial costs prior to extension works to the existing prison.
- Landcom Archbold Road, Eastern Creek and McIver Avenue, Middleton Grange – Former farming lands purchased by Landcom for residential subdivision, school developments, parklands and town centre (shopping facilities etc). Responsible for cost estimating, project management and co-ordination of site investigation works. Preparation of a preliminary RAP and recommendations in remediation techniques and costs.
- Liverpool City Council Former park lands. Duties included historical searches, analysing aerial photographs, liaising with authorities (WorkCover, Council's, EPA etc), identification of potential contaminants and report generation.
- Mann Group Various soil classifications and leachate management for an EPA inert and solid licensed landfill.
- Manson Group Kogarah Former glass factory with an UST. Preparation of a Remedial Action Plan (RAP), followed by remediation and validation of the site including project management, liaising with contractors and clients, sampling, soil classification and assessment, and final report generation.
- Narwee Boys High School Preparation of a hazardous materials (HAZMAT) assessment. Analysis involved identifying asbestos materials from lagging, roofing guttering, floor tiles, electricity backing boards, mercury switches, mercury/cadmium lamps, synthetic mineral fibres, lead paint etc.
- Parramatta City Council Sampling and soil classification of soils, followed by onsite management of the disposal of the soils to licensed landfills.
- Paynter Dixon Constructions Pty Ltd Homebush Teachers Credit Union site. Duties included historical searches, analysing aerial photographs, liaising with authorities (WorkCover, Council's, EPA etc), identification of potential contaminants and report generation.
- Penrith City Council Claremont Meadows Stage 2 South Western Precinct Masterplan. Full environmental and salinity assessments were carried out to address the Claremont Meadows Stage 2 DCP - Performance Standards for which is currently under consideration by the Council for the Stage 1 Subdivision Plan of the properties provides for creation of residential allotments, dedication of a Public

Reserve, construction and dedication of new roads and creation of residue lots for future development.

- Proust & Gardner Consulting Carrying out full assessments, from Stage 1 to Stage 4, on numerous rural residential and residential sites in both the local Sydney and Central Coast regions. Sites included vacant lands, farming lands, market gardens, poultry farms, residential properties and schools.
- Reefway Waste Services Alexandria and Auburn Active waste receivers and recyclers. Management of soil quality by analysing soils for reuse. Discussion with DECC on providing a 'gateway' mechanism for removing bona fide resource recovery from the waste regulatory framework.
- Richard Crookes Constructions Pty Ltd Various soil classifications and leachate management for an EPA inert and solid licensed landfill.
- Robert Moore & Associates Carrying out full assessments, from Stage 1 to Stage 4, on numerous rural residential and residential sites across Sydney. Sites included vacant lands, farming lands, market gardens and residential properties.
- Royal Botanical Gardens, Sydney Former works depot. Managing removal of UST's and associated pipelines, sampling and soil classification of soils to an EPA inert and solid waste licensed landfill.
- Sam the Paving Man Sampling and soil classification of soils, followed by onsite management of the disposal of the soils to licensed landfills.
- Stocklands Mall, Merrylands Former carpark area. Sampling and soil classification of soils, followed by onsite management of the disposal of the soils to licensed landfills.
- SPAD Pty Ltd Former chemical factory. Report for full environmental site assessment, duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil sampling, preparation of borehole logs, decontamination, QA/QC and report generation. Preparation of a RAP, managing remedial works and issuing final validation report.
- Sydney Airport Corporation Soil classification and leachate management for an EPA solid licensed landfill.
- Telstra Depot, Rooty Hill Report for full environmental site assessment, duties included desktop study, liaising with clients, contractors and regulatory authorities, identification of potential contaminants, sampling and analysis design, soil sampling, preparation of borehole logs, decontamination, QA/QC and report

generation. Preparation of a RAP, managing remedial works and issuing final validation report.

- THG Resource Kingston, QLD –Active scraps metal and car recycler. Duties included detailing management practices, outlining procedures for all identified environmental issues and providing a plan during operation to safeguard the way in which waste is managed.
- C University of Sydney Various soil classifications and leachate management for an EPA inert and solid licensed landfill.

APPENDIX I

AARGUS FIELDWORK PROTOCOLS

Fieldwork Protocols

February 2008

TABLE OF CONTENTS

1.0	OBJECTIVE AND SCOPE	3
2.0	SOIL SAMPLING	3
2.	1 COLLECTION METHODS	3
	2.1.1 Possible collection methods	3
	2.1.2 Rotary Air Hammer	3
	2.1.3 Hand auger	4
	2.1.4 Solid or Hollow auger	4
	2.1.5 Test pits and trenches excavated with a backhoe or an excavator	4
	2.1.6 Backfilling	5
2.	2 SOIL LOGGING	5
2.	3 COLLECTING SOIL SAMPLES	5
2.	4 LABELLING OF SOIL SAMPLES	5
2.	5 EQUIPMENT DECONTAMINATION	6
2.	6 SURVEYING OF SAMPLING LOCATIONS	7
3.0	GROUNDWATER SAMPLING	7
3.	1 GROUNDWATER SAMPLING OBJECTIVES	7
3.	2 GROUNDWATER WELL CONSTRUCTION	7
3.	3 DEVELOPMENT OF MONITORING WELLS	9
3.	4 PURGING OF MONITORING WELL	9
3.	5 GROUNDWATER SAMPLING	.10
3.	6 Low Flow Purging	.11
3.	7 FIELD MEASUREMENTS	.12
3.	8 LABELLING OF WATER SAMPLES	.12
3.	9 SAMPLING CONTAINERS	12
3.	10 WELL SURVEYING	13
4.0	SURFACE WATERS AND STORMWATER SAMPLING	.13
4.	1 SURFACE WATERS	13
4.	2 STORMWATER	13
4.	3 FILTRATION DEVICES	.14
5.0	PHOTO IONISATION DETECTOR (PID)	.14
6.0	ACID SULFATE SOILS	.15
6.	1 DESKTOP CLASSIFICATION	.15
6.	2 SITE WALKOVER	.16

6.3	6.3 VISUAL CLASSIFICATION	
6.4	6.4 SAMPLE COLLECTION	
6.5	6.5 FIELD TESTING	
6.6	6.6 LABORATORY TESTING	
7.0	NOISE MONITORING	17
8.0	DUST MONITORING	17
9.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
9.1	9.1 INTRODUCTION	
9.2	9.2 FIELD QAQC SAMPLES	
9	9.2.1 General	
9	9.2.2 Intra-laboratory duplicates	
9	9.2.3 Inter-laboratory duplicates	
9	9.2.4 Blanks	
9.3	9.3 LABORATORY QUALITY ASSURANCE / QUALITY CONTROL	
9	9.3.1 Laboratory duplicate samples	
9	9.3.2 Matrix Spiked Samples	
9	9.3.3 Laboratory Blank	
9	9.3.4 Laboratory Control Samples	
9	9.3.5 Surrogates	
10.0	0 DATA QUALITY OBJECTIVES	
10.	10.1 General	
10.2	10.2 Field DQOs	
10.3	10.3 ASSESSMENT OF RPD VALUES FOR FIELD DUPLICATE SAMPLES	
10.4	10.4 LABORATORY DATA QUALITY OBJECTIVES (DQO)	
	10.4.1 General	
L	10.4.2 Laboratory analyses DQOs	
	10.4.3 Non-compliances	
11.0	0 USE AND CALCULATION OF THE 95% UCL FOR SITE	VALIDATION PURPOSE25
12.0	0 COPYRIGHT	
13.0	0 ABBREVIATIONS	
14.0	0 REFERENCES	

LIST OF TABLES

Table 1: RPD acceptance criteria	23
Table 2: Laboratory Data Quality Objectives (DQOs)	24

1.0 OBJECTIVE AND SCOPE

The objective of Aargus Pty Ltd (Aargus) Protocols is to ensure that the methodology followed during environmental works is adequate to provide data which is usable and representative of the conditions actually encountered at the site.

The scope of these protocols is to:

- Outline the methods and procedures for the field investigations during an environmental assessment or remediation and validation program; and
- Specify methods and procedures which ensure that soil and groundwater samples recovered are representative of the actual subsurface conditions at the site, as well as ensuring that the risk of introducing external contamination to samples and to the environment is minimised.

These protocols must be adhered to by Aargus personnel and by sub-contractors involved in field investigations. Any deviations from these protocols should be explained within the Environmental Report to which they are attached.

2.0 SOIL SAMPLING

2.1 Collection methods

Possible collection methods

Soil samples are generally collected by drilling or excavating the subsurface, using one of the following drilling / excavating technique:

- Rotary air hammer
- Hand auger
- Solid or hollow auger
- Backhoe or Excavator

Rotary Air Hammer

The air hammer technique requires the use of synthetic blend lubricants to prevent potential contamination of the borehole if a leak were to occur. In addition, micro-filters are installed into the drilling airline to avoid contamination by hydrocarbons present in the compressed air.

Samples of rock are generally not collected. Where rock samples are needed, specialised techniques are used.

Hand auger

A hand auger is generally used to investigate subsurface conditions of unconsolidated materials at shallow depths or in areas difficult to access with other equipment. Samples are recovered from the hand auger, taking care to avoid cross contamination, especially between samples from the same hole but at different depths. Sampling equipment is to be thoroughly cleaned between sampling events, in accordance with the procedures outlined in Section 2.5 Equipment decontamination.

Solid or Hollow auger

Solid and hollow auger drilling techniques are well suited to unconsolidated materials. The main advantage of the hollow auger technique is that the drill rods allow access of sampling equipment at specified depths within the annulus of the drill rods.

Samples of soil are recovered using a split spoon sampler at specific depth intervals. The split spoon sampler is driven into the soil by the drill rig whilst attached to the end of the drill rods. The retrieved sample is then split lengthways into two halves when duplicate samples are required. A few centimetres of soil from the top of the split spoon sampler is discarded. Samples for volatile analysis are collected first, without mixing.

Test pits and trenches excavated with a backhoe or an excavator

Test Pit and Trenches excavated with a backhoe/excavator are used to collect relatively shallow (i.e. less than 3.5m depth) soil samples on occasions where:

- Access multiple sample locations at a site are needed;
- A description of the subsurface soil profile to approximately 3.5 m depth is required (generally in unsaturated conditions);
- The investigated site is free from known underground services and access problems;
- The investigated site is free from impenetrable surface or near surface layers including concrete and asphalt pavements; and
- ① Undisturbed soil samples are required, usually at multiple depths.

Backfilling

On completion of drilling / test pitting, the investigated locations are backfilled with cuttings and compacted. Excess drill cuttings are disposed of appropriately. If the sampling location is located in an area used for the circulation of people or vehicles, the top of the sampling location should be sealed with mortar.

2.2 Soil logging

The lithological logging of soil samples and subsurface conditions is undertaken by environmental scientists / engineers. The soil characteristics are logged in accordance with the Australian Standard *AS1726-1993 Geotechnical Site Investigations*. This includes description of grain size, visible staining, odour and colour, and of the clues which may suggest that the soil may be contaminated. Descriptions of soils are made using the Northcote method.

2.3 Collecting soil samples

The soil sample is collected using a stainless steel trowel, or directly with the hand if the sampler wears disposable gloves. Soils are quickly transferred into 250g clean amber glass jars, which have been acid washed and solvent rinsed. The jars are sealed with a screw-on teflon lined plastic lid, labelled, and placed for storage in an ice filled chest.

2.4 Labelling of soil samples

Samples are labelled with the following information:

- Job number;
- Date of sample collection;
- Name of the environmental scientist / engineer who collected the sample; and
- Sample number: the letters used to label the samples are BH, C, SS, SP, TP and V which refer respectively to borehole samples, composite samples, surface samples, stockpile samples, test pit samples and validation samples. For borehole samples, BH3 1.0m is the sample taken from borehole 3 at 1.0m below ground level. For stockpile samples, SP1/1 is the first sample from stockpile 1. TP1 2.0m is the sample taken from testpit 1 at a depth of 2.0 metres below ground level. V3/F is the validation sample taken from location V3, the letters F N, S, E and W refer to the floor, north, south, east and west walls of an excavation; if some contamination is found in the validation sample, then chasing out of the contamination is required and in this case, the label of the sample is

changed by adding /1 or /2 according to the number of times the contamination has been chased out. B stands for blind.

2.5 Equipment decontamination

The drilling and sampling equipment are cleaned using an appropriate surfactant (e.g. phosphate-free detergent or Decon 90), then rinsed with tap water prior to final rinsing with distilled water.

The following procedures shall be followed for decontamination of drilling and sampling equipment:

- buckets or tubs used for decontamination shall be cleaned with tap water and detergent and rinsed with tap water before sampling commences;
- fill first bucket or tub with tap water, and phosphate free detergent;
- fill second bucket or tub with tap water;
- clean equipment thoroughly in detergent water, using a stiff brush; rinse equipment in tap water;
- dry equipment with disposable towels;
- rinse equipment by thoroughly spraying with tap water, then final rinse with distilled water;
- allow equipment to dry; and
- C change water and detergent solution between sampling event.

Sampling decontaminated equipment should be kept in a clean area to prevent crosscontamination. Equipment that cannot be thoroughly decontaminated using the detergent wash and water rinse should be cleaned with steam or high pressure water or if a cleaner is not available, not used for further sampling (and labelled clearly "not decontaminated") or discarded. Equipment decontaminated using the high pressure steam cleaner will be treated as described above. Any equipment that cannot be thoroughly decontaminated shall be discarded and replaced.

A new pair of latex gloves is used to handle each sample. Contaminated materials such as disposable clothing should be disposed of in accordance with environmental best practice.

2.6 Surveying of sampling locations

Sampling locations are generally located by reference to existing ground features, e.g. fences, buildings.

If the survey for location and elevation is required, it should be done by a licensed surveyor, or alternatively by an Aargus environmental engineer / scientist if the level of precision required can be obtained by the use of Aargus field equipment. Aargus has GPS equipment and level meters.

If the location is given by a licensed surveyor, it is generally given to the nearest 0.1m and referenced to the Australian Map Grid (AMG) coordinates.

3.0 GROUNDWATER SAMPLING

3.1 Groundwater Sampling Objectives

The primary objective of any groundwater (quality) sampling is to produce groundwater samples that are representative of groundwater in the aquifer and will remain representative until analytical determination or measurements are made.

3.2 Groundwater well construction

Typically wells are installed to gain access to the groundwater to be sampled. Well construction details will depend on hydrogeological setting of the site, for example the depth to groundwater strata present. Relevant information regarding of the hydrogeological setting will have been obtained prior the development of any groundwater sampling program.

The preferred drilling methods will depend on the hydrogeological setting of the site and the objectives of the groundwater sampling program. For example, shallow wells in unconsolidated materials, such as sand, may be drilled using a hand auger. Drill rigs using solid of hollow flight augers may be used to drill deeper wells or through semi consolidated materials, such as stiff clay. Rotary air hammer drilling may be used were well is to be drilled through consolidated materials, such as rock. Soil samples may also be collected during drilling (see Section 2.0 SOIL SAMPLING).

Drilling methods and materials must not have an unacceptable impact on the groundwater to be sampled. For example, if groundwater from the wells is to be tested for organic analytes, petroleum based lubricants are not to be used and oil traps must be installed on compressed air lines. Drilling techniques should also minimise compaction or smearing of the boreholes wells and transport of material into different zones, in

particular, when drilling through potentially contaminated material to access groundwater.

Drill cuttings accumulated over a hole are to be removed as drilling progresses so as to prevent fallback of cuttings into the hole. Samples may be collected at a range of depths in the borehole profile during drilling.

The depth of groundwater well depends of the purpose of the investigation on the soil profile and the regional geology of the area. If the borehole location is covered by concrete, coring of the superficial hard layer is undertaken first.

Petroleum based lubricants are not used on drilling and sampling equipment, instead, Teflon based greases are used where appropriate. An Aargus environmental scientist/engineer monitors and records drilling activities, procedures adopted, materials used, progress of the stages of well construction (including (i.e. screen location - standpipe lens, placement, of sand filters and well seals, and general completion details), as well as the lithology of the subsurface, visible staining, unusual odours and colours (if any).

The use of a rotary air hammer rig has many advantages for consolidated material (e.g. rock), including:

- Large diameter to allow precise placement of groundwater monitoring equipment;
- No injection of drilling fluids into the formation with resulting benefits in ensuring integrity of recovered samples, and therefore no need to dispose 0ff-site drilling fluids;
- Rapid penetration in consolidated material; and
- S Provision of reliable indications of saturated conditions whilst drilling.

Drill cuttings accumulated over a hole are removed as drilling progresses so as to prevent fallback of cuttings into the hole. Samples are taken at a range of depths in the borehole profile.

Construction of the monitoring well may be carried out by the Aargus environmental scientist/engineer or the drilling contractor under the direct supervision of the Aargus environmental scientist/engineer. Typically on completion of drilling, slotted heavy duty PVC pipe (generally 50mm in diameter for the installation of monitoring well) is inserted into the drilled hole. The base of the pipe is capped prior to insertion in order to prevent natural soils entering the well from below. The drilled area surrounding the pipe

screen is filled with coarse-grained sand. Bentonite or cement grout seal plugs may be placed above the screen depending on the hydrogeological setting of the site and sand cement mix. Excess drill cuttings are disposed of in accordance with environmental best practice.

The Aargus environmental scientist/engineer will monitor and record drilling activities, and materials encountered during drilling (including visible staining, unusual odours and colours (if any)). They will log the procedures adopted, materials used, and well construction (i.e. location of the screen, placement of sand packs and well seals and general completion details).

3.3 Development of monitoring wells

Development is the process of removing fine sand silt and clay from the aquifer around the well screen in order to maximise the hydraulic connection between the bore and the formation.

Development involves removal of fluids that may have been introduced during drilling operations as well as fines from the sand filter and screens. Well development generally involves actively agitating the water column in the well then pumping water out until, ideally, water pumped comes out visibly clean and of constant quality. Development can be undertaken immediately after installation of the groundwater well or after sufficient time has been allowed for bentonite / grout seals to consolidate.

Bores used for groundwater quality monitoring should be developed after drilling, then left for a period until bore chemistry can be demonstrated to have stabilised, any where between 24 hours and 7 days.

3.4 Purging of monitoring well

In most groundwater monitoring wells, there is a column of stagnant water above the screen that remains standing in the bore between sampling rounds. Stagnant water is generally not representative of formation water because it is in contact with bore construction materials for extended periods, is in direct contact with the atmosphere and is subject to different chemical equilibria.

Purging is the process of removing this water from the well prior to sampling. In newly installed wells, the disturbance cause by drilling may also affect water present in the well, and purging may be carried out concurrently with well development. Ideally wells should be purged at the lowest rate practicable until stable water chemistry is achieved.

Purging is to be performed less than 24 hours before sample collection, but usually it is performed just before sampling. The default procedure for purging a groundwater monitoring well is as follows:

- If required, measure the concentration of volatile organic vapours in the well standpipe headspace.
- Measure the depth to the standing water level in the well standpipe and the total depth of the well relative to a reference mark (generally the top of the groundwater pipe). The depth of any light non-aqueous phase liquids (LNAPL) floating on the standing water should be recorded if present using an interface probe or other suitable device.
- Calculate the volume of the groundwater in the well standpipe. The internal diameter of the well casing and the diameter of the drill hole are used to calculate the volume of water to be removed during development (nominally a minimum of three well volumes, including water present in the sand pack, should be abstracted during purging).
- Samples of water are collected generally following development/purging of each well volume. The samples are measured immediately in the field for water quality parameters, pH, electrical conductivity, redox potential and temperature. Water quality measurement probes are to be calibrated against stock standards on regular basis and decontaminated between wells.
- Pump/bail groundwater from the well until the water quality parameters have stabilised (i.e. within 10% of the previous reading) or the well is pumped/bailed dry. Collect all purged water into an appropriate volume measurement vessel. Purged water is disposed of appropriately.
- Record all appropriate development details on the well development and sampling sheet.
- Decontaminate all equipment used in the purging procedure.

3.5 Groundwater sampling

For each sampling event, starting water levels, purging times and volumes, water quality parameters and sample details are recorded on well development and sampling sheets.

At each groundwater monitoring well, a polyethylene sheet or Eski lid is placed beside the well head and firmly fixed into position. Sampling equipment is placed onto the sheet to avoid cross contamination between the ground surface and the groundwater in the well.

Groundwater samples are collected in a bailer (Stainless Steel or disposable polymer) fitted with a stainless steel emptying device. The bailer is decontaminated prior to use. All groundwater samples are retrieved at an appropriate rate in order for turbulence (which leads to cloudy samples) to be minimised.

When collecting a water sample the bailer is lowered gently into the well, until it is within the screened interval. The bailer is then steadily withdrawn, to minimise agitation of water in the well and disturbance of the surrounding sand filter material.

The procedure for using the bailer is:

- Slowly lower the bailer into the water and allow it to sink and fill with a minimum of disturbance;
- Empty the first bailer sample into a container in order to measure the volume of bailed water and to rinse the bailer with well water;
- Emptying the bailer through the bottom-emptying device (BED) collects the samples. The sample is discharged down the side of the sample bottle to minimise entry turbulence;
- Collect samples for volatile organics first, followed by semi-volatiles, other organics and then inorganics;
- The flow from the BED is adjusted so that a relatively low flow rate is maintained.

3.6 Low flow purging

Purging large volumes of water can be impractical, hazardous or may adversely affect the contaminant distribution in the sub-surface (e.g. through dilution). Low-flow purging involves minimal disturbance of the water column and aquifer ad is preferable to the removal of a number of bore volumes. This method removes only small volumes of water, typically at rates of 0.1 to 1.0L/min, at a discrete depth within the bore.

Low-flow purging consists essentially of the following steps:

- The pump inlet is carefully and slowly placed in the middle or slightly above the middle of the screened interval at the point where the contaminant concentration is required (dedicated pumps are ideal for low-flow sampling). Placement of the pump inlet too close to the bottom of the bore can cause increased entrainment of solids, which have collected in the bore over time.
- Purging begins, typically at a rate of 0.1 to 1.0L/min, although higher rates may be possible provident the rate of purging does not cause significant draw down in the bore.

- Ouring purging, groundwater stabilisation parameters should be measured and recorded to determine when they stabilise.
- When parameters have stabilised, the sample may be collected, at a rate slower or equal to purge rate.

3.7 Field measurements

Field measurement of groundwater parameters provides a rapid means of assessing certain aspects of water quality. They are generally taken to:

- Ensure that formation water is being sampled
- Provide on-site measurements for water quality parameters that are sensitive to sampling and may change rapidly (e.g. temperature, pH, redox and dissolved oxygen (DO)).
- Compare with laboratory measurements of these parameters to assist in the interpretation of analytical results of other parameters (e.g. check for chemical changes due to holding time, preservation and transport).

Field measurements may be taken either in-situ or after groundwater has been extracted from a bore. Field measurements should be taken immediately before collecting each sample.

pH and dissolved oxygen meters need to be calibrated before every use, in accordance with the manufacturer's instructions. If field meters are to be used over several hours, periodic readings of a reference solution must be made to ensure calibration is stable.

3.8 Labelling of water samples

The water samples are identified with the same information than soil samples. GW4/2 is the sample collected from well GW4, and 2 refers to the sample number from this well, i.e. second time the well is sampled.

3.9 Sampling containers

Water samples are generally collected in bottles and containers provided by the laboratory who will analyse the samples. These are generally plastic bottles for inorganic analysis, and amber glass bottles for organic analysis. Vials are used to collect samples to be analysed for volatile organics. Sampling containers have appropriate preservatives added.

The bottles are filled to overflowing so as to remove air bubbles as much as possible prior to firmly screwing on the container cap. When performing purge and trap

analyses, the vials are filled to 100% of their capacity. For headspace analyses, the vials are filled to approximately 75% of their capacity.

3.10 Well surveying

If the survey for location and elevation of a groundwater well is required, it should be done by a licensed surveyor, or alternatively by an Aargus environmental engineer / scientist if the level of precision required can be obtained by the use of Aargus field equipment.

If the location is given by a licensed surveyor, it is generally given to the nearest 0.1m and referenced to the Australian Map Grid (AMG) coordinates.

If the elevation is given by a licensed surveyor, the top of the standpipe and the ground surface adjacent to the standpipe are generally given to the nearest 0.01m and may be referenced to the Australian Height Datum (AHD). Relative levels (RLs) can be used if general contours are required.

4.0 SURFACE WATERS AND STORMWATER SAMPLING

4.1 Surface waters

Surface water samples are collected by hand, using automatic samplers, batch samplers or continuous samplers which can be installed to take samples at discrete time intervals or continuously. For well mixed surface water samples (up to 1m depth) a sample bottle is immersed by hand covered by a glove below the surface. Samples are also taken with sample poles that have extension arms so that more representative samples can be taken. For areas where access is difficult, samples can be collected using a retractable sample extension pole (sample bottle on the end) or in a bucket and transferred to sample bottles immediately following collection. Other methods such as pumping systems, depth samplers, automatic samplers, and integrating systems are all relatively similar with water samples being supplied to a discharge point where samples can be collected in appropriate bottles.

4.2 Stormwater

The monitoring of stormwater quality is generally required prior to reject waters into stormwater drains. Field measurements are generally carried out using a Hanna Multiprobe prior to the discharge of the water to stormwater. The water parameters measured include pH, electrical conductivity (EC, in mS/cm) and Total Dissolved Solids (TDS).

If sampling is required, samples to be analysed for inorganic compounds are collected in plastic bottles, and samples to be analysed for organic compounds are collected in amber glass bottles. The bottles are filled to overflowing so as to remove air bubbles as much as possible prior to firmly screwing on the container cap. Sample containers may have preservatives added, in accordance with the laboratory recommendations.

Vials are used for volatile organic analysis. When performing purge and trap analysis, the vials should be filled to 100% of their capacity, whereas for headspace measurements, the vials should be filled to approximately 75% of their capacity..

4.3 Filtration devices

Water filtration devices may be required to filter surface water before it is discharged to the stormwater network, in order to remove suspended solids in water. One of the most simple and commonly used filtration device consists of between two to four retention sedimentation bays with a geotextile covering the inlet and outlet hoses.

Litter traps (wire or plastic grids or netting) may also be used to remove larger particles or debris. Other techniques to reduce the amount of suspended matter in water include wet basins, artificial wetlands, infiltration trenches and basins, sand filters and porous pavements. Some of these latter methods are also likely to reduce the bacterial levels in water.

The use of these filtration devices does not preclude carrying out monitoring of water quality following treatment and prior to discharge, particularly to the stormwater system.

5.0 PHOTO IONISATION DETECTOR (PID)

Photo Ionisation Detector (PID) measurements are used to provide indicative field measurements of the amount of ionisable vapours released from a soil or water sample into the head space above the sample.

The procedure for field screening of samples using the PID is as follows:

- Prior to testing commencing, the PID is calibrated using standard laboratory calibration gas. The battery of the PID should also be sufficiently charged for the duration of the testing;
- The background concentrations of total ionisable compounds in the ambient air in the vicinity of the work area are established prior to the commencement of site activities. Background measurements are normally taken approximately 5 to 10m upwind of the work area. The readings are observed before and after

each measurement of a sample to ensure that the PID is operating correctly. The maximums, fluctuations and other relevant comments are recorded.

- A glass sample jar is filled with the soil sample to be tested. The jar should not be filled more than 3/4 full;
- The jar is sealed with aluminium foil or plastic wrap and the lid is screwed;
- At least 20 minutes after placing the sample into the sampling jar, check that the PID reading is constant and similar to the background. Insert the top of the PID through the foil or plastic wrap in order to measure the ionisable vapour concentrations in the airspace above the sample;
- S Monitor and record the PID readings noting fluctuations and maximum readings;
- Monitor the readings after returning the PID to a location with background concentrations. Interchangeable, clean, in-line filters for the PID probe are available to allow rapid decontamination of the unit in the field if background readings measured by the instrument are significantly greater than the background air concentration initially established;
- If perforations are present in the aluminium foil prior to analysis reseal the jar and test after having waited again for at least 20minutes.

An alternative acceptable method is to place the soil to be tested in a disposable zip loc plastic bag and test the sample by punching a hole in the bag with the PID tube to sample the gas from the bag.

6.0 ACID SULFATE SOILS

6.1 Desktop Classification

An initial review of Acid Sulphate Soils (ASS) Planning Maps is undertaken to identify the likelihood and risk of ASS being present at the site. The following geomorphic conditions of the site are also checked as an indication of the presence of ASS: sediments of recent geological age (Holocene) ~ 6000 to 10 000 years old; soil horizons less than 5m AHD (Australian Height Datum); marine or estuarine sediments and tidal lakes; coastal wetlands or back swamp areas; waterlogged or scalded areas; inter-dune swales or coastal sand dunes; areas where the dominant vegetation is mangroves, reeds, rushes and other swamp tolerant and marine vegetation; areas identified in geological descriptions or in maps bearing sulfide minerals, coal deposits or former marine shales/sediments; and deeper older estuarine sediments >10m below the ground surface.

6.2 Site Walkover

The presence on site of hydrogen sulphide odours, acid scalds, flocculated iron, monosulfidic sludges, salt crusts, stressed vegetation, corrosion of concrete and/or steel structures and water logged soils are noted as cues for the presence of ASS.

6.3 Visual Classification

Visual indicators taken into account for the presence of ASS are the presence of jarosite (pale yellow colour) horizons or mottling, unripe muds (waterlogged, soft, blue grey or dark greenish grey in colour), silty sands and sands (mid to dark grey in colour) and the presence of shells.

6.4 Sample Collection

Samples are collected to at least one metre below the depth of the proposed excavation or estimated drop in the water table, or two metres below ground level, whichever is deepest. Samples are collected from every soil horizon or every 0.25m. Large shells, stones and fragments of wood, charcoal and other matter are noted, but removed from the sample. Small roots are not removed from the sample. If laboratory analysis is required, samples are sent for laboratory testing within 24 hours of sampling.

6.5 Field Testing

The field pH peroxide test (pH_{FOX}) is used to obtain an indication of the presence of oxidisable sulphur in the soil. The procedure for this test is as follows:

- A small sample of soil (<100g) is collected in a glass jar and split into two subsamples. One sub-sample is made into a 1:5 (soil : deionised water) solution in order to measure field soil pH and electrical conductivity (EC) analysis. If the resulting pH is less than 4 (pH_F<4), the sample is identified as actual acid sulphate soil (AASS)
- The second sub-sample is made into a 1:5 (soil : Hydrogen Peroxide) solution to measure pH of oxidised soil. Sodium Hydroxide (NaOH)-adjusted analytical (30%) grade Hydrogen Peroxide (H₂O₂) is used as the soil oxidising agent. A mobile electronic pH/EC probe is used to measure soil pH.
- The presence of oxidisable sulphides, organic matter or manganese in the sample, will trigger a chemical reaction. The type of effervescence and any colour change is noted with the final pH measured to give an indication of the potential change in pH should the soil remain exposed to oxygen. If the resulting pH is less than 3 (pH_{FOX}<3) or if pH_{FOX} is at least one unit less than the pH_F, this suggests that the soil tested is potential acid sulfate soil (PASS).

6.6 Laboratory Testing

When the field test suggests that the material tested contains ASS or PASS, this should be confirmed by laboratory analysis (POCAS/SPOCAS or TOS testing).

7.0 NOISE MONITORING

Measurements are taken at a range of times during the day in order to assess the trends in noise emission over time. Noise is measured using a hand-held Rion NA-29 Sound Level Meter with digital microphone. Some noise meters change and appropriate equioment which is calibrated is used for all monitoring. The reference level of the meter is checked before and after the measurements using a Rion NC-73 Sound Level Calibrator to ensure there is no significant drift. Noise measurements are made over a 15-minute interval using the "fast" response of the sound level meter. 5dB would be added if the noise is substantially tonal or impulsive in character. Measurements should be adapted to the type of noise being measured i.e. construction, occupation, club, etc.

8.0 DUST MONITORING

Sampling is conducted at locations of potential concern. The deposit gauge static sampler contains a glass funnel measuring approximately 150mm with the angle of the cones sides being 60 degrees, placed into a rubber stoppers in the mouth of a five-litre glass receptacle. The deposit gauge is placed in a stand so that the height of the funnel of the deposit gauge is between 1.8 and 2.2m above ground level. A quantity of 7.8g copper sulfate pentahydrate dissolved in water is placed in the glass receptacle in order to prevent algal growth.

Exposure periods vary depending on the purpose of the investigation but typically the period is 30 ± 2 days. Samples are usually analysed for measured soils: total solids, insoluble solids, ash and combustible solids.

Dust can also be measured using a High Volume Air Sampler. Such sampler should be located at least 2 metre away from any structures so that an undisturbed sample can be collected. HVASs can be used indoors or outdoors.

9.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

9.1 Introduction

Inaccuracies in sampling and analytical programs can result from many causes, including collection of unrepresentative samples, unanticipated interferences between elements during laboratory analyses, equipment malfunctions and operator error. Inappropriate sampling, preservation, handling, storage and analytical techniques can also reduce the precision and accuracy of results.

The Australian Standard AS4482.1-2005 *Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 1: Non-Volatile and Semi-Volatile Compounds* has documented procedures for quality assurance (QA) and quality control (QC) for sampling and analysis to ensure that the required degree of accuracy and precision is obtained. The Australian Standard also recommends the use of two laboratories for the implementation of a QA program for the analyses in addition to the QC procedures followed by the primary laboratory.

9.2 Field QAQC samples

General

Procedures for duplicate sampling should be identical to those used for routine sampling and duplicate samples will be despatched for analysis for the same parameters using the same methods as the routine samples. No homogenisation of samples which may induce the loss of volatile compounds (such as BTEX) should occur. Whenever possible, the selection of samples for duplicate analyses should be biased towards samples believed to contain the contaminant of concern.

Intra-laboratory duplicates

Intra-laboratory duplicate samples, also referred to as Blind duplicates, are used to assess the variation in analyte concentration between samples collected from the same sampling point and / or also the repeatability of the laboratory analyses. Samples are split in the field to form a primary sample and a QC duplicate (intra-laboratory replicate) sample. The intra-laboratory duplicates are taken from a larger than normal quantity of soil collected from the same sampling point, removed from the ground in a single action, and divided into two vessels. These samples are submitted to the laboratory as two individual samples without any indication to the laboratory that they have been duplicated.

Intra-laboratory duplicate samples should be collected at a rate of approximately 1 in 20 soil samples and analysed for the full suite of analytes. At least one intra-laboratory duplicate sample should be included in each batch of samples.

Inter-laboratory duplicates

Inter-laboratory duplicate samples, also referred to as Split duplicates, provide a check on the analytical proficiency of the laboratories. The samples are taken from a larger than normal quantity of soil collected from the same sampling point, removed from the ground in a single action, and divided into two vessels. One sample from each set is submitted to a different laboratory for analysis. The same analytes should be determined by both laboratories using the same analytical methods.

Inter-laboratory duplicates should be collected at a rate of approximately 1 in 20 soil samples and analysed for the full suite of analytes. At least one inter-laboratory duplicate sample should be included in each batch of samples.

Blanks

Rinsate Blanks

Rinsate blank samples provide information on the potential for cross-contamination of substances from the sampling equipment used. Rinsate blanks are collected where cross-contamination of samples is likely to impact on the validity of the sampling and assessment process (e.g. when the investigation level of a contaminant is close to the detection limit for this contaminant). They are prepared in the field using empty bottles and the distilled water used during the final rinse of sampling equipment. After completion of the decontamination process, fresh distilled water is poured over the sampling equipment and collected. The distilled water is exposed to the air for approximately the same time the sample would be exposed. The collected water is then transferred to an appropriate sample bottle and the proper preservative added, if required.

One rinsate blank par day and / or one per piece of sampling equipment are collected during the decontamination process, and analysed for the analytes of interest. At least one rinsate blank should be included in each batch of samples. One rinsate blank should be collected for every 50 samples collected and analysed for the full suite of analytes.

Trip Blanks / Spikes

Trip blanks / spikes are a check on the sample contamination originating or lost from sample transport, handling, and shipping. These are samples of soil or water prepared by the laboratory with a zero or known concentration of analytes.

Field Blanks

Field blanks are a check on sample contamination originating from sample transport, handling, shipping, site conditions or sample containers. These are similar to trip blanks except the water is transferred to sample containers on site.

9.3 Laboratory quality assurance / quality control

The laboratories undertake the analyses utilising their own internal procedures and their test methods (for which they are NATA, or equivalent, accredited) and in accordance with their own quality assurance system which forms part of their accreditation.

Laboratory duplicate samples

Laboratory duplicate samples measure precision. These samples are taken from one sample submitted for analytical testing in a batch. The rate of duplicate analysis will be according to the requirements of the laboratory's accreditation but should be at least one per batch. Precision is reported as standard deviation SD or Relative Percent Difference %RPD, being:

$$%$$
RPD = $(D1 - D2) \times 200$
(D1 + D2)

where: D1: sample concentration and D2: duplicate sample concentration

Replicate data for precision is expected to be less than 30% RPD at concentration levels greater than ten times the EQL, or less than 50% RPD at concentration levels less than ten times the EQL. Sample results with a RPD exceeding 100% require specific discussion. Note that certain methods may allow for threshold limits outside of these limits.

Matrix Spiked Samples

Matrix spiked samples are used to monitor the performance of the analytical methods used, and to assess whether the sample matrix has an effect of on the extraction and analytical techniques. A sample is spiked by adding an aliquot of known concentration of the target analyte(s) to the sample matrix prior to sample extraction and analysis. These samples should be analysed at a rate of approximately 5% of all analyses, or at least one per batch. Matrix spikes are reported as a percent recovery %R, being:

 $\%R = (SSR-SR) \times 100$ SA

where: SSR: spiked sample result, SR: sample result (blank) and SA: spike added

Recovery data for accuracy is described by control limits specified by the laboratory (generally ranging between 70% and 130%) and referenced to US EPA SW-846 method guidelines values.

Laboratory Blank

Laboratory blanks are used to correct for possible contamination resulting from the preparation or processing of the samples. These are usually an organic or aqueous solution that is as free as possible of analyte and contains all the reagents in the same volume as used in the processing of the samples. Laboratory blanks must be carried through the complete sample preparation procedure and contain the same reagent concentrations in the final solution as in the sample solution used for analysis. Laboratory blanks should be analysed at a rate of once per process batch, and typically at a rate of 5% of all analyses.

Laboratory Control Samples

Laboratory Control Samples, also referred to as Quality Control Check Samples, are used to assess the repeatability and long term accuracy of the laboratory analysis. These are externally prepared and supplied reference material containing representative analytes under investigation. Recovery check portions should be fortified at concentrations that are easily quantified but within the range of concentrations expected for real samples. Laboratory Control samples should be analysed at a rate of one per process batch, and typically at a rate of 5% of analyses. Laboratory control samples are reported as a percent recovery %R, being:

$$\%R = \frac{(SSR-SR)}{SA} \ge 100$$

where: SSR: spiked sample result, SR: sample result (blank) and SA: spike added

Recovery data for accuracy is described by control limits specified by the laboratory and referenced to US EPA SW-846 method guidelines values. Ideally, all calculated recovery values should be within the acceptable limits. However, in the event that control limit outliers are reported, professional judgement is used to assess the extent to which such results may affect the overall usability of data.

Surrogates

Surrogates are used to provide a means of checking, for every analysis, that no gross errors have occurred at any stage of the procedure leading to significant analyte losses. Surrogate are quality control monitoring spikes, which are added to all fields and QAQC samples at the beginning of the sample extraction process in the laboratory. Surrogates are closely related to the sample analytes being measured (particularly with regard to

extraction, recovery through cleanup procedures and response to chromatography) and are not normally found in the natural environment.

Surrogate spikes will not interfere with quantification of any analytes of interest and may be separately and independently quantified by virtue of, for example, chromatographic separation or production of different mass ions in a GC/MS system. Surrogates are measured as Percent Recovery %R expressed as:

$$%R = (SSR) \times 100$$

SA

where: SSR: spiked sample result and SA: spike added

Recovery data for accuracy is described by control limits specified by the laboratory and referenced to US EPA SW-846 method guidelines values.

10.0 DATA QUALITY OBJECTIVES

10.1 General

Data Quality Objectives (DQOs) are defined to ensure that the data is sufficiently accurate and precise to be used for the purpose of the environmental works. DQOs are defined for a number of areas including:

- sampling methods;
- decontamination procedures;
- S sample storage (including nature of the containers) and preservation;
- S laboratory analysis, including PQL, recoveries (surrogates, spikes), duplicates;
- Operation of CoC forms;
- S document and data completeness; and
- data comparability.

The NSW DEC Contaminated Sites Guidelines for the NSW Site Auditor Scheme (2nd Ed) 2006 also provide a seven step process for Data Quality Objectives (DQOs). These are as follows:

Aargus

- Identify the decisions
- Identify inputs to the decision
- O Define the study boundaries
- Oevelop a decision rule
- Specify limits on decision errors
- Optimise the design for obtaining data

DQOs must be adopted for all assessments and remediation programmes. The DQO process must be commenced before any investigative works begin on a project.

10.2 Field DQOs

The DQOs for sampling methods, decontamination procedures, sample storage (including nature of the containers) and preservation, preparation of CoC forms, and document and data completeness are the Aargus protocols which have been described in the previous sections of this document.

10.3 Assessment of RPD values for field duplicate samples

The criteria used to assess RPD values for field duplicate samples is based on discussion reported in AS4482.1 1997, a summary of which is presented below:

Sample type	Typical acceptable RPD		
Intra-laboratory duplicate (blind duplicate)	30-50°% (*)		
Inter-laboratory duplicate (split duplicate)	30-50% (*)		

Table 1: RPD acceptance criteria

It is noted that other factors such as sampling technique, sample variability, absolute concentration relative to criteria and laboratory performance should also be considered when evaluating RPD values.

The Australian Standard also states that the variation can be expected to be higher for organic analytes than for inorganics, and for low concentrations of analytes (lower than five times the detection limit). Based on Aargus Pty Ltd experience, RPD up to 70% are considered to be acceptable for organic species. RPD of 100% or more are generally considered to demonstrate poor correlation and should be discussed.

10.4 Laboratory Data Quality Objectives (DQO)

General

Labmark is the Aargus-preferred laboratory for the analysis of primary samples. Labmark is accredited by the National Association of Testing Authorities (NATA).

The laboratory generally used by Aargus for analysing inter-duplicate samples is SGS.

Analytical methods including detection limits are provided on each laboratory report and are checked as part of the data review process.

Laboratory QA/QC

Specific to Labmark, standard QA/QC data includes LCS, MB, CRM (CRM metals only), Laboratory Duplicate (1 in first 5-10 samples, then every tenth sample) and Spike sample (1 in first 5-20 samples, then every 20th sample), and surrogate recovery's (target organics). All QA/QC is reviewed by a senior chemist prior to customer release and includes a DQO comment on final report. Additional QA/QC maybe performed on batches less than 10 samples; however additional charges shall apply at the appropriate analytical rate/sample.

Laboratory analyses DQOs

The following table summarises Labmark laboratory analyses DQOs.

Laboratory QA/QC Testing	Laboratory QA/QC Acceptance Criteria		
	For all inorganic analytes the Method Blanks must be less than		
Method Blanks	the LOR. For organics Method Blanks must contain levels less		
	than or equal to LOR.		
	At least two of three routine level soil sample Surrogate Spike		
Surrogate Spikes	recoveries are to be within 70-130% where control charts have		
	not been developed and within the estimated control limited for		
	charted surrogates. Matrix effects may void this as an acceptance		
	criteria. Any recoveries outside these limits will have comment.		
	Water sample Surrogates Spike recoveries are to within 40-130%.		
	The presence of emulsions, surfactants and particulates may void		
	this as an acceptance criteria. Any recoveries outside these limits		
	will have comment.		
Matrix Spikes	Sample Matrix Spike duplicate recovery RPD to be <30%. In the		
	event that the matrix spike has been applied to samples whose		
	matrix or contamination is problematic to the method then these		
	acceptance criteria apply to the Control Matrix Spike.		

Cable 2: Labmark Data	Quality Objectives (DQOs)
-----------------------	---------------------------

Laboratory QA/QC Testing	Laboratory QA/QC Acceptance Criteria			
	Control standards must be 80-120% of the accepted value.			
Laboratory Control	Control standard recoveries are to be within established control			
Samples	limits or as a default 60-140% unless compound specific limits			
_	apply.			
Laboratory Duplicate	For Inorganics laboratory duplicates RPD to be <15%.			
Samples	For Organics Laboratory duplicates must have a RPD <30%.			
Calibration of	The collibration sheels standards must be within 1/150/			
Chromatography	The calibration check standards must be logg then the LOP.			
Equipment	The calibration check blanks must be less than the LOR.			

Non-compliances

Exceedances of QAQC results outside the DQO should be thoroughly investigated and discussed with the laboratories concerned, and the outcomes of these investigations should be recorded in the project files.

11.0 USE AND CALCULATION OF THE 95% UCL FOR SITE VALIDATION PURPOSE

Validation of a site at the completion of remediation works should comply with the recommendations of the applicable guidelines. For a site to be considered uncontaminated or successfully remediated, the typical minimum requirement is that the 95% upper confidence limit (UCL) of the arithmetic average concentration of the contaminant(s) is less than an acceptable limit, eg the threshold value of an health-based investigation level.

The calculation of the 95% UCL of the arithmetic average concentration method requires that the probable average concentration and standard deviation of the contaminant be known. This method is most applicable for validation sampling, where the mean concentration and the standard deviation can be estimated from sampling results. The 95% UCL is calculated as follows:

95% UCL = mean + t
$$\alpha$$
,n-1 STDEV \sqrt{n}

where

mean arithmetic average of all sample measurements

t $_{\alpha,n-1}$ A test statistic (Student's t at an ∞ level of significance and n-1 degrees of freedom)

- ∞ The probability (in that case chosen to be 0.05) that the 'true' average concentration of the sampling area might exceed the UCL average determined by the above equation
- STDEV Standard deviation of the sample measurements
- n number of samples measurements

12.0 COPYRIGHT

These protocols remain the property of Aargus Pty Ltd (Aargus). They must not be reproduced in whole or in part without prior written consent of Aargus. These protocols must not be used for the purposes of reporting, methodology evaluation or assessment for the purposes of carrying out any work subject of these protocols and for the purposes of a contract or project with Aargus. No use whatsoever is to be made of these protocols without the express agreement of Aargus.

13.0 ABBREVIATIONS

ANZECC	Australian and New Zealand Environment and Conservation Council
ASS	Acid Sulfate Soil
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethyl benzene and Xylene
CoC	Chain of Custody
DEC	Department of Conservation (formerly EPA)
DIPNR	Department of Infrastructure Planning and Natural Resources
DQO	Data Quality Objective
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
HIL	Health-Based Soil Investigation Level
LGA	Local Government Area
NEHF	National Environmental Health Forum
NEPC	National Environmental Protection Council
NEPM	National Environmental Protection Measure
NHMRC	National Health and Medical Research Council
NSL	No Set Limit
OCP/OPP	Organochlorine Pesticides /Organophosphate Pesticides
РАН	Polycyclic Aromatic Hydrocarbon
PASS	Potential Acid Sulfate Soil
PCB	Polychlorinated Biphenyl
PID	Photo Ionisation Detector
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance, Quality Control
RAC	Remediation Acceptance Criteria
RAP	Remediation Action Plan
RPD	Relative Percentage Difference
SAC	Site Assessment Criteria
SVC	Site Validation Criteria
SWL	Standing Water Level
TCLP	Toxicity Characteristics Leaching Procedure
TESA	Targeted Environmental Site Assessment
TPH	Total Petroleum Hydrocarbons
UCL	Upper Confidence Limit
VHC	Volatile Halogenated Compounds
VOC	Volatile Organic Compounds

14.0 REFERENCES

- ANZECC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites.
- C ANZECC (1996) Drinking Water Guidelines.
- ANZECC (2000) Guidelines for Fresh and Marine Waters.
- Land and Biodiversity committee (2003) Minimum Construction requirements for water bores in Australia.
- National Environment Protection Council (NEPC) (1999) National Environmental Protection (Assessment of Site Contamination) Measure.
- Netherlands Ministry of Spatial Planning, Housing and the Environment (1994 rev. 2000) *Environmental Quality Objectives in the Netherlands*.
- New South Wales Environment Protection Authority (1994) *Guidelines for Assessing Service Station Sites.*
- New South Wales Environment Protection Authority (1995) Sampling Design Guidelines.
- New South Wales Environment Protection Authority (1997) Guidelines for Consultants Reporting on Contaminated Sites.
- New South Wales Environment Protection Authority (1998) *Guidelines for the NSW Site Auditor Scheme*.
- New South Wales Department of Environment & Conservation (2006) *Guidelines* for the NSW Site Auditor Scheme (2^{nd} Ed).
- New South Wales Environment Protection Authority (1999) *Guidelines on Significant Risk of Harm from contaminated land and the duty to report.*
- New South Wales Environment Protection Authority (1999) Environmental Guidelines: Assessment, Classification & Management of Liquid & Non-liquid Wastes.
- New South Wales Environment Protection Authority (2005) *Guidelines for assessing former orchards and market gardens.*
- QLD Department of Environment (DoE) (1998) Draft Guidelines for the Assessment & Management of Contaminated Land in Queensland.
- QLD EPA Waste Management Branch, Contaminated Land Section Details about investigation thresholds and sampling – sent to Aargus on 14 Nov 2000.
- Standards Australia AS1726-1993 (1993) *Geotechnical Site Investigations*.
- Standards Australia AS4482.1-1997 (1997) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 1: Non-Volatile and Semi-Volatile Compounds.
- Standards Australia AS5667.11-1998 (1998) Water Quality Sampling: Guidance on the Sampling of Groundwaters.
- S Victorian EPA (2000) Groundwater Sampling Guidelines

PROPOSED DEVELOPMENT PLANS

MACKENZIE ARCHITECTS Charteded Architect No.6033

ABN 46 129 502 772 4/3 The Postern Castlecrag NSW 2068 Phone: (02) 9967 9966 Fax: (02) 9967 9977

 \leq

 $\frac{2}{2}$

ト

m

NZIE

 $\overline{\mathbb{R}}$

 \mathcal{O}

www.mackenziearchitects.com.au info@mackenziearchitects.com.au

SAMSTONE

Multi-residential Development 5-9 Croydon St North, Lakemba.

Drawing Title: Elevations - Elevations

Northern Elevation, Southern Elevation, Eastern Elevation, Western Elevation

Copyright Mackenzie Architects. All rights reserved

BOUNDA	<u>A R Y 123.5</u>	<u>9 m</u>			
14 15 16 17 18 35 34 35 . . 22m ³ 37.602m ³ 57.602m ³ .	19 20 21 15.00 % 25.00 %				
ST 642 m² ST 642 m² 11 12 13 11 12	6,000 B 0.1 8 4 0.0 8 4 8 4 0.0 1 0 8 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	BOUNDARY	25.95 m	BOUNDARY 14.00 m	BOUNDARY 35.0

APPENDIX L

IMPORTANT INFORMATION ABOUT YOUR REPORT

IMPORTANT INFORMATION ABOUT YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Aargus (Australia) Pty Ltd and its associated companies using guidelines prepared by ASFE (The Association) of Engineering Firms Practising in the Geo-sciences. They are offered to help you in the interpretation of your Environmental Site Assessment (ESA) reports.

REASONS FOR CONDUCTING AN ESA

ESA's are typically, though not exclusively, carried out in the following circumstances:

- as pre-acquisition assessments, on behalf of either purchaser or vender, when a property is to be sold;
- as pre-development assessments, when a property or area of land is to be redeveloped or have its use changed for example, from a factory to a residential subdivision;
- as pre-development assessments of greenfield sites, to establish "baseline" conditions and assess environmental, geological and hydrological constraints to the development of, for example, a landfill; and
- as audits of the environmental effects of an ongoing operation.

Each of these circumstances requires a specific approach to the assessment of soil and groundwater contamination. In all cases however, the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the proposed activity. Such risks may be both financial, for example, cleanup costs or limitations on site use, and physical, for example, health risks to site users or the public.

THE LIMITATIONS OF AN ESA

Although the information provided by an ESA could reduce exposure to such risks, no ESA, however, diligently carried out can eliminate them. Even a rigorous professional assessment may fail to detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled.

AN ESA REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

Your environmental report should not be used:

- when the nature of the proposed development is changed, for example, if a residential development is proposed instead of a commercial one;
- when the size or configuration of the proposed development is altered;
- when the location or orientation of the proposed structure is modified;
- when there is a change of ownership
- or for application to an adjacent site.

To help avoid costly problems, refer to your consultant to determine how any factors, which have changed subsequent to the date of the report, may affect its recommendations.

ESA "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of contamination, its likely impact on the proposed development and appropriate remediation measures. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, The actual interface between rock and time. materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to help minimise its impact. For this reason owners should retain the services of their consultants

through the development stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Natural processes and the activity of man change subsurface conditions. As an ESA report is based on conditions, which existed at the time of subsurface exploration, decisions should not be based on an ESA report whose adequacy may have been affected by time. Speak with the consultant to learn if additional tests are advisable.

ESA SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Every study and ESA report is prepared in response to a specific brief to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Other persons should not use a report for any purpose, or by the client for a different purpose. No individual other than the client should apply a report even apparently for its intended purpose without first conferring with the consultant. No person should apply a report for any purpose other than that originally contemplated without first conferring with the consultant.

AN ESA REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when design professionals develop their plans based on misinterpretations of an ESA. To help avoid these problems, the environmental consultant should be work with appropriate retained to design professionals to explain relevant findings and to review the adequacy of their plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final borehole or test pit logs are developed by environmental scientists, engineers or geologists based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final logs customarily included in our reports. These logs should not under any circumstances be redrawn for inclusion in site remediation or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimise the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To the likelihood of boring reduce log misinterpretation, the complete report must be available to persons or organisations involved in the project, such as contractors, for their use. Those who o not provide such access may proceed under the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing all the available information to persons and organisations such as contractors helps prevent costly construction problems and the adversarial attitudes that may aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because an ESA is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in transmittals. These are not exculpatory clauses designed to foist liabilities onto some other party. Rather, they are definitive clauses that identify where your consultant's responsibilities begin and end. Their use helps all parties involved recognise their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your ESA report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.